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Stochasticity pervades life at the cellular level. Cells receive
stochastic signals, perform detection and transduction with
stochastic biochemistry, and grow and die in stochastic
environments. Here we review progress in going from the
molecular details to the information-processing strategies
cells use in their decision-making. Such strategies are
fundamentally influenced by stochasticity. We argue that
the cellular decision-making can only be probabilistic and
occurs at three levels. First, cells must infer from noisy
signals the probable current and anticipated future state of
their environment. Second, they must weigh the costs and
benefits of each potential response, given that future. Third,
cells must decide in the presence of other, potentially
competitive, decision-makers. In this context, we discuss
cooperative responses where some individuals can appear
to sacrifice for the common good. We believe that decision-
making strategies will be conserved, with comparatively
few strategies being implemented by different biochemical
mechanisms in many organisms. Determining the strategy
of a decision-making network provides a potentially
powerful coarse-graining that links systems and evolu-
tionary biology to understand biological design.
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Introduction

Life at the cellular level is stochastic. Diffusion, gene
expression, signal transduction, the cell cycle, and the
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extracellular environment are all stochastic processes that
change in time in ways that can be difficult to predict (Raj and
van Oudenaarden, 2008; Shahrezaei and Swain, 2008). While
a cell’s environment determines its response, information on
the environment comes from different, fluctuating, and
perhaps contradictory, signals. This information is processed
using biochemical networks whose components themselves
fluctuate in concentration and intracellular location. By
coming together into a multicellular organism, cells can
reduce stochastic effects in their immediate environment,
but even in humans signals and the cellular response to signals
can be substantially stochastic (Geva-Zatorsky et al, 2006;
Sigal et al, 2006; Feinerman et al, 2008).

In our opinion, such conditions imply that the cell’s internal
model of its environment can only be probabilistic. We
propose that a biochemical network performing decision-
making has three main tasks: it should infer from noisy,
incoming stimuli the probable state or states of the extra-
cellular environment and, potentially, the probable future
states; given the most probable states, it must decide an
appropriate response through weighing the advantages and
disadvantages of each potential response; and it must
implement these functions using a strategy that is evolutiona-
rily stable and so allow a population of cells to outcompete
their rivals and survive environmental catastrophes (Figure 1).
Such a division has been made in other fields, from economics
to artificial intelligence and neuroscience. Statistical inference
is the discipline concerned with inferring a quantity we cannot
observe directly (the quantity is hidden) from a quantity we
can observe, but which is only correlated with the quantity
of interest. Decision theory provides a means to find the
optimum response given uncertain information by weighing
appropriately the costs and benefits of each potential response.
Finally, evolutionary theory considers scenarios where
decisions are not made in isolation but with other competing
decision-makers.

Here we survey recent work showing that techniques
from these fields can explain not just qualitatively but
quantitatively the behaviour of cellular networks, suggesting
that cells may have evolved to biochemically implement such
methods. We will try to place into one framework the strategies
adopted by cells to detect, process, and respond to extra-
cellular changes. By strategy we mean how a particular
signalling network detects and analyses information not in
terms of the details of biochemistry, but in terms of the
functions of information processing that biochemistry
performs. We believe that it is at this level of information
processing that we shall discover evolutionarily conserved
principles, whether we consider a stem cell deciding between
different fates or a bacterium deciding between expressing and
not expressing a particular operon. We will begin by
investigating the strategies adopted to benefit individual cells
before discussing strategies that are best understood at the
level of populations of cells.
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Factors influencing cellular decision-making. A cell senses signals generated by a change in the environment and must decide an appropriate response. This

decision-making can depend on the cell’s predictions for the current and future state of the environment based on the signals it has sensed, the short-term history of the
cell, the expected benefits and the costs of each potential response, the actions of other cells, which may be competitive or cooperative, and the time taken to both decide
and generate the response. The response may be a change in internal state or an action that changes the environment itself.

How do cells interpret noisy signals?

Cells are confronted with a fundamental problem: their
biochemical decision-making machinery is intracellular, but
their behaviour should be determined by the extracellular
environment. The environment may contain, for example,
energy resources or a mating partner or predator. Signals
detected on the cell surface and transduced intracellularly,
however, are stochastic and can never present a complete
picture of the environment. What strategy should cells adopt
to interpret and make use of such noisy extracellular signals?

One possibility is statistical inference: the cell may use
extracellular signals to explicitly estimate, or infer, the state of
the extracellular environment. To a human reasoner, estimat-
ing states is natural. When a doctor diagnoses a patient, she
will have several possible physiological states of the patient in
mind and will use observations and tests to determine which
state is most likely. Similarly, a cell might be interested in the
state of its environment, even though it cannot observe the
state directly, because knowing the probable state can be much
more beneficial than knowing several environmental para-
meters. For example, a rise in temperature might mean that a
bacterium has become exposed to the sun or that it has entered
a host organism—two different environmental states that
require very different responses. From measuring extracellular
signals, such as the local concentration of metabolites or
hormones, cells ought to estimate the most likely state of their
environment before deciding an appropriate response.

Cells that do estimate the state of their environment must
infer the state or the likely future state from signals that
are only correlated with the state. The optimum way to
perform such inference is Bayesian inference, at least it can be
proved to be so if we accept a set of axioms that any form of
inference ought to obey (Cox, 1946). We conjecture, then,
that cells compute the likelihood of different possible
environmental states, E, based on signals they sense, S,
according to Bayes’s rule:

P(S|E)P(E)

PES) = =5

(1)
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This computation assumes that several forms of ‘prior knowl-
edge’ are available to the cell. First, it assumes knowledge of
the possible environments, E, and their relative likelihoods, or
prior probabilities, P(E). This prior knowledge may be
uninformative—for example, that a mating partner is equally
likely to be in any direction before pheromone is detected—or
more restrictive—for example, that concentrations of an
extracellular sugar should be in one of two states, either high
or low, with a low state twice as likely as a high state. Second, it
requires the probabilities of observing different signals in
different environments, P(S|E). The third term, P(S), describes
the overall likelihood of sensing a signal S for all possible states
of the environment. The result of the computation is the
posterior probability, P(E|S)—an inference about the like-
lihood of different environmental states given the prior
knowledge and the signals that have been sensed. In Box 1,
we give an example of using Bayes’s rule. The posterior
probability, P(E|S), is a function of the magnitude of the signal
sensed, S, and we next discuss the common shapes that this
function takes.

Cells may infer the state of their environment

Many signal transduction and genetic networks with very
different biochemistry have dose-response functions that
are sigmoidal. A sigmoidal function is often considered
advantageous because it prevents fluctuations in the input
signal affecting the response if the input is below a threshold
value, at which the response increases sharply. Near the
threshold value, however, a sigmoidal response can amplify
fluctuations because a small change in input generates a large
change in output. If the signal S is continuous and the
environment can only be in two states, then equation (1)
describes the posterior probability that the environment is in
one of these states. Viewed as a function of S, such a posterior
probability is often smooth and sigmoidal raising the
possibility that biochemical networks generate sigmoidal
responses because they are solving inference problems
(Libby et al, 2007). In the simplest case, the output of a
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Box 1 Inferring changes in the environment—Bayes’s rule

Bayes'’s rule is a probability theorem, which allows a quantitative description of inference. It enables the computation of the probability that an unobserved
random variable, say X; takes different values based on the observed value of a related random variable, say Y. The prior probability of X, P(X), is updated via
Bayes's rule to the posterior probability of X given that we have observed Y, P(X1Y). Bayes's rule can be derived from the definition of conditional probability:
P(Xand Y)= P(XIY)P(Y)= P(Y1X)P(X). Consequently, we have

P(X|Y) =

which is Bayes’s rule relating the prior and posterior probabilities of X.

As an example, suppose you are leaving the cinema after seeing a movie, and you wonder whether or not it is raining outside. Let X' = Rain denote that it is
raining and X'=NoRain denote that is not. Knowing nothing more, you believe it is equally likely to be raining as not: the prior probabilities of X are
P(X = Rain) = P(X = NoRain) = 0.5. While you cannot yet see for certain whether or not it is raining, suppose that you can see whether or not people that
enter the cinema are holding umbrellas. We denote this observation to be Y, and we write Y'=Umbrellas if some people have umbrellas and
Y= NoUmbrellas otherwise. We expect a relationship between whether or not people are carrying umbrellas and whether or not it is raining. We can,
therefore, infer the probability it is raining from observing whether or not the people that enter do have umbrellas. For example, you might believe that
if it is raining, then some people will surely enter with umbrellas: P(Y = Umbrellas| X = Rain) =1 and P(Y'= NoUmbrellas|X = Rain) = 0. If it is not raining,
however, then perhaps some people will still have umbrellas, but the probability is lower: P(Y=UmbrellaslX=NoRain)=0.2 and
P(Y=NoUmbrellas|X = NoRain) = 0.8.

Now, suppose you do observe people enter with umbrellas, Bayes’s rule allows you to quantify how your prior belief in rain changes. Specifically, you can
compute the probability that it is raining given your observation of umbrellas:

P(X = Rain|Y = Umbrellas) P(Y = Umbrellas|X = Rain)P(X = Rain)

P(Y = Umbrellas)

We already know the two terms in the numerator of the right-hand side of the equation. We do not know, but can compute, P(Y'= Umbrellas):

P(Y = Umbrellas) =P(Y = Umbrellas and X = Rain)
+ P(Y = Umbrellas and X = NoRain)
= P(Y = Umbrellas|X = Rain)P(X = Rain)
+ P(Y = Umbrellas|X = NoRain)P(X = No Rain)
=1x0.5+0.2x0.5=0.6

using conditional probability. Returning to Bayes’s rule, we thus conclude:

P(X = Rain|Y = Umbrellas) =

1x0.5 5
=—-~0.83
0.6 6

Your posterior probability of rain has increased compared to the prior probability, as expected given that you saw people enter the cinema with umbrellas.

decision-making network could be proportional to the poster-
ior probability of the extracellular environment being in a
particular state. This inference about the probable state of the
environment can then be processed by downstream networks
to decide an appropriate response.

For example, Libby et al (2007) asked whether it is possible
to design a genetic network that can infer the state of the
environment from noisy concentrations of an intracellular
signal—in essence, implementing a Bayesian computation
using genetic-regulatory machinery. They considered a bacter-
ium in an environment with just two states: one rich in a
metabolite, say a sugar, and one poor in sugar. These states
could correspond to the gut of a host organism and the soil. To
regulate the genes for metabolism of sugars, many bacteria
employ transcription factors directly as sensors: sugar enters
the cell, interacts with a transcription factor, and consequently
influences gene expression. Libby et al, therefore, treat
intracellular sugar as the environmental signal. Each state of
the environment implies a different amount of intracellular
sugar, although this amount is stochastic because of fluctua-
tions in the transport of sugar, its consumption in the cell,
and other factors (Figure 2). We write P(S|high) for the
distribution of intracellular sugar, S, when the environment
has a high concentration of extracellular sugar and P(S|low)
for the distribution of intracellular sugar when the environ-
ment has a low concentration of extracellular sugar. Bayes’s
rule then states that the posterior probability of the state high
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in sugar depends on the concentration of intracellular sugar
through

P(S|high)P(high)
P(S)
_ P(S|high)P(high)
" P(S|high)P(high) + P(S|low)P(low)

P(high|S) =

(2)

where we have expanded P(S) over the two states of the
environment. Analysing models of single-component gene
regulation, Libby et al showed that even networks consisting
of just one gene controlled by an allosteric transcription factor
can transcribe at a rate that tightly matches the posterior
probability of the state high in sugar for many distributions of
intracellular sugar.

This interpretation of a biochemical network as a network
that performs inference is consistent with measurements of the
regulatory response in vivo. We can use an experimentally
measured response to determine the underlying distributions
for the input stimulus—the equivalent of P(S|high) and
P(S|low) in equation (2)—that would give rise to the measured
response if this response is proportional to the posterior
probability of an environmental state high in the input
stimulus (Figure 2B-D). These distributions are part of the
organism’s internal model of its environment. They describe
what the organism expects in different environmental
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Figure 2 Biochemical networks may use statistical inference to infer the probable state of the extracellular environment. (A) Inference in an environment with two
states corresponding to low and high amounts of extracellular sugar S. The state low in sugar generates the blue distribution of intracellular sugar; the state high in sugar
generates the red intracellular distribution. The environmental state is ambiguous for intracellular concentrations of sugar lying in the overlap between the two
distributions. The Bayesian posterior probability of the state high in sugar given intracellular levels of S'is the black, sigmoid-like curve. (B) The response function of the
lac operon measured by its rate of transcription in populations of E. colias a function of the chemical IPTG, a non-hydrolysable version of the sugar lactose, and cyclic
AMP (cAMP), whose concentration in vivois inversely proportional to the concentration of glucose (Makman and Sutherland, 1965). Data taken from Setty et a/(2003).
In the interpretation of Libby et al, the extracellular environment has two states: one high in lactose (IPTG) and low in glucose (high cAMP), and the other low in lactose
and high in glucose (low cAMP). (C) An example of the probability distributions for lactose and cAMP in the two extracellular states (Libby et al, 2007). If the extracellular
environment has two states with these distributions, then the response function measured in panel B is similar to the posterior probability of the state high in lactose and
low in glucose (high in cAMP). (D) The posterior probability of the state high in lactose and low in glucose given the two distributions in panel C. Compare with the

measured response function in panel B.

states and, as a consequence, underlay its decision-making
strategies.

Improving inference over time

The inference described by Libby et al depends only on the
steady-state concentration of sugar. It, therefore, requires the
network to reach steady state within the lifetime of a
fluctuation in extracellular sugar if the network is not to
average fluctuations in sugar. In situations where the signal
fluctuates substantially over time, the cell might be expected to
continually update its beliefs. Andrews et al (2006) have
proposed that the network generating bacterial chemotaxis
performs such real-time inference. To chemotax along a
gradient of a signal, Escherichia coli estimates a time derivative
of the signal (Berg and Brown, 1972). The signal is detected by
its binding to receptors at the plasma membrane, which is a
stochastic process (Korobkova et al, 2004).Andrews et al
assume that, before estimating the time derivative, the cell first
infers the concentration of the signal at the cell membrane
from the concentration of receptors bound by signal. Using
simulation, they show that the inference implemented by the
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chemotactic network strongly resembles a Kalman filter (Kal-
man, 1960; Kalman and Bucy, 1961), an inference technique in
control theory to track the dynamics of a hidden variable (here
the concentration of the signal) from noisy measurements of a
correlated variable (the concentration of receptors bound by the
signal). A Kalman filter falls within the Bayesian framework. It
performs updating through a sequential application of Bayes’s
rule: the current posterior probability of the extracellular state
becomes the prior probability of the extracellular state at the
next time step, and Bayes’s rule is then applied again to find the
updated posterior probability (Barker et al, 1995). Intuitively,
sequential updating allows a cell to base its decisions not just on
the current signals it is receiving, but also on their recent
history. In chemotaxis, such inference leads to optimum low-
pass filtering of the concentration of the signal, reducing the
effects of stochastic biochemistry and rotational diffusion of the
chemotaxing cell, while maintaining a response sufficiently fast
to allow the bacterium to detect changes in the gradient of the
signal in real-time (Andrews et al, 2006).

Similar real-time inference may also occur in the system for
sugar metabolism described above. For example, once exposed
to a high extracellular state of sugar, another state high in sugar

© 2009 EMBO and Macmillan Publishers Limited



is perhaps more likely, at least over some period of time,
because the bacteria are probably in the human gut. Such
memory naturally fits into Bayesian inference through the
prior probabilities of the states high and low in sugar, P(high)
and P(low). After exposure to a state high in sugar, P(high)
could increase and P(low) will correspondingly decrease. With
this new prior probability, the posterior probability of the state
high in sugar will still be a sigmoidal function of S, but will
be larger at low concentrations of sugar. The change in the
prior probability, P(high), could be biochemically implemen-
ted in E. coli through the concentration at the plasma
membrane of the lactose permease, LacY, which is known to
remain at an elevated concentration for generations after an
initial exposure to lactose (Novick and Weiner, 1957).
Increasing the concentration of the permease will increase
the rate of the transcriptional response in a manner similar to
the change in the posterior probability because more lactose
will be transported into the cell for the same concentration
of extracellular lactose. In the eukaryote Saccharomyces
cerevisiae, a similar epigenetic memory of prior exposure to
galactose is created through concentrations of the cytosolic
enzyme Gallp (Zacharioudakis et al, 2007). This increase in
concentration also has the effect of enhancing the transcrip-
tional response of the GAL regulon to low concentrations
of galactose (Kundu et al, 2007). Chromatin modification
is another eukaryotic epigenetic mechanism that has the
potential to biochemically implement changes in prior
probabilities of environmental states (Houseley et al, 2008).
Such learning is often referred to as adaptive sensitization
(Ginsburg and Jablonka, 2009).

These examples show that cells have the potential to
implement sophisticated statistical calculations to infer
changes in their environment despite stochastic signals and
stochastic sensing networks. Over evolutionary time scales,
the signalling and decision-making networks should evolve to
encode the properties of the different possible environmental
states. If environmental characteristics change, then the
networks should alter to match this change (Tagkopoulos
et al, 2008; Mitchell et al, 2009).

Cells anticipate changes in the state of the
environment

Cells are continually sensing signals from a multitude of
sources. Integrating this information has the potential to
improve inference and consequently the fitness of the
organism. While inferring the current environmental state
can be advantageous, equally so is anticipating future changes.
Tagkopoulos et al (2008) have shown that E. coli appears to
infer from a sudden increase in temperature that it has left the
soil and is now in a host organism. Consequently, as the
bacteria pass into the gut of the host, they will experience a
reduction in available oxygen. Using microarrays, Tagkopou-
los et al demonstrated that the transcriptional response to an
increase in temperature overlaps with the response to a loss of
oxygen even if the temperature change occurs at maximal
oxygen levels. Having inferred from the increase in tempera-
ture that they are now in a host, the bacteria predict an
imminent loss of oxygen and respond appropriately in
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advance (Tagkopoulos et al, 2008). Such anticipation is learnt
over evolutionary time scales. Using microevolution experi-
ments in which increase in temperature was unnaturally
followed by increase in oxygen, Tagkopoulos et al evolved
bacteria in which the association between oxygen and
temperature was substantially reduced. Another example can
be found in the expression of the sugar operons of E. coli.
During passage along the human gut, lactose appears earlier
than maltose, and, indeed, anticipating future exposure to
maltose, E. coli expresses the genes for metabolizing maltose
upon exposure to lactose (Mitchell et al, 2009). This response
is adaptive: activation of the maltose operon is lost if bacteria
are grown in an environment where lactose is not followed by
maltose and alternative sugars cannot substitute for lactose
and induce expression. Similar anticipatory responses also
occur in S. cerevisiae (Mitchell et al, 2009).

Biochemical networks have also been proposed that learn
on the time scale of the lifetime of the organism (Gandhi et al,
2007; Ginsburg and Jablonka, 2009; Fernando et al, 2009). In
such an associative learning framework, learning requires
both memory and recall. Upon responding to a stimulus, an
organism must record the aspects of the stimulus and its
response. When the stimulus stops, the organism should also
stop responding, but, through recall of its previous exposure,
the threshold of stimulus at which future responses occur will
change (Ginsburg and Jablonka, 2009). A classic example is
Pavlov’s dog, which learnt to associate a bell chime with
feeding by simultaneous occurrence of the chime and sight of
food. Genetic and signal transduction networks have been
designed in silico, which, although they initially respond only
to stimulus A and not to stimulus B, learn upon simultaneous
exposure to both stimuli to associate the stimuli and then
respond to stimulus B when it is applied alone (Gandhi et al,
2007; Fernando et al, 2009). Both networks work through a
molecule that enhances the response to stimulus B, but is only
synthesized when both stimuli simultaneously occur. Such
associative learning, despite its adaptive potential, has not yet
been discovered in cells.

Weighing costs and benefits

Once a cell has inferred the most probable state of its
environment, it needs to decide an appropriate response.
The anticipated costs and benefits of each potential response,
given the probable environmental state and the probable
future environmental states, must be compared to choose both
the most advantageous response and the level at which to
respond. For new gene expression, for example, one expected
cost is the expenditure of cellular energy in the synthesis of
RNA and proteins; the expected benefits will depend on the
environment and the properties and quantities of the proteins
synthesized. These costs and benefits will be biochemically
encoded into decision-making networks over evolutionary
time-scales.

Cost and benefit in terms of fithess

In many situations, it may be hard to quantify or even identify
the various costs and benefits to a cell of a particular response,

Molecular Systems Biology 2009 5



Strategies for cellular decision-making
TJ Perkins and PS Swain

A 0.08 B C 2
0.06 02
. =
- N
8 0.04 2 04 N
(@) [
o £
=
0.02 o)
0
(o)<,
0 0.5 1 1.5 10-4 10-2 100 102 10-2 10-1 100

Relative lac expression, Z/Zyt

External lactose, L (mM) External lactose, L (mM)
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the operon is expressed in environments without lactose. The red curve is given by a fit of equation (4). (B) Once the cost has been found, the benefit of expressing the
operon can be obtained by measuring the increase in the relative growth rate when the operon is fully expressed in environments with different amounts of extracellular
lactose. The red curve is given by a fit of equation (5) with equation (6). Data in panels A and B are from Dekel and Alon (2005). (C) The level of the expression of the lac
operon, Z, under conditions of zero glucose. Zyr is the level of expression of the operon when fully induced. Data are from Kalisky et al (2007). The red curve is the
predicted level of expression of the operon by Kalisky et al found by maximizing the benefit minus the cost as a function of the extracellular concentration of lactose

(equation (7)). Bars indicate standard errors throughout.

particularly for cells in multicellular organisms. For unicellular
organisms, however, the situation is simpler because much of
their physiology appears optimized to allow as rapid a
reproduction as possible, at least for laboratory strains. An
appropriate measure of fitness, therefore, is cellular growth
rate, an experimentally accessible quantity. Perhaps the
simplest cellular decision is when and at what level a cell
should express a particular set of genes. Dekel and Alon (2005)
elegantly studied precisely this decision in the bacterium
E. coli by measuring the effects on cellular growth rate of
expressing the lac operon in different extracellular concentra-
tions of the sugar lactose. The lac operon encodes enzymes to
metabolize lactose, and we will use Z to denote their
intracellular concentration. By inducing the operon to different
extents in an environment without lactose and measuring the
reduction in growth rate of a population of bacteria as
compared with a control population that do not express the
operon, Dekel and Alon estimated the cost of this decision
(Figure 3A). They found that the reduction in growth rate
increased more than linearly with the amount of enzymes
produced because, they argued, high synthesis rates of some
proteins can deplete cellular resources and so impact cell
growth super-linearly (Dekel and Alon, 2005)—a form of
opportunity cost where one decision precludes another. In this
environment low in sugar, they found empirically that growth
rate gpw is reduced from the growth rate of the control
population, g, by

8low = & — ¢(Z) (3)
where cost of expression is calculated as
c(Z) = MoZ + neZ* (4)

for positive constants n, and n('). Cost is a quadratic function
of the quantity of enzymes synthesized, Z, at least for the range
of Z tested. Given this cost, they estimated the benefit of
expression in different extracellular concentrations of lactose
by measuring the increase in growth rate for cells fully
expressing the operon as compared with control cells that did
not express the operon. Any increase in growth rate is
determined by surplus energy gained by the metabolism of
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lactose despite synthesis of the enzymes required (Figure 3B).
In this environment where concentration of extracellular sugar
can be high, the growth rate is

&high = 8 — ¢(Z) +b(Z, S) (5)
where increase in growth rate from sugar metabolism can be
described by

SZ

b(z.$) = b5

(6)

for positive constants 6 and Ky. Dekel and Alon (2005)
postulate that this Michaelis—Menten form arises from the
action of LacY permeases, which import lactose into the cell.

Decisions to optimize fitness

To make a decision, a cell should compare the fitness of each
potential response given the expected extracellular environ-
ment. We define the fitness of a response as the expected
benefit to the growth rate minus the expected cost. Such
comparisons happen often in our own reasoning. To decide
between one treatment and another, a doctor weighs the cost
and efficacy of each treatment with the seriousness of the
disease. Dekel and Alon (2005) showed that the level of
expression of the lac operon appears to have evolved to
optimize a similar trade-off. Given their measured costs and
benefits of expression, they used decision theory to ask what
particular concentration of enzymes, Z, should E. coli
synthesize to optimize its fitness. By assuming an extracellular
environment in just one state with a constant concentration of
extracellular lactose, they argue, and show with microevolu-
tion experiments, that bacteria maximize their growth rate as a
function of Z. The optimum concentration of Z, Z,,, satisfies

b(Zopt, S) — c(Zopt) 2b(Z, S) — c(Z) (7)

for a fixed concentration of the sugar lactose, S, and for all
other concentrations of Z. We assume that the concentration of
intracellular lactose is proportional to the extracellular
concentration. The optimum Z is sigmoidal in S (Figure 3C).
Below a critical concentration of sugar, the cost of expression
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Box 2 Deciding by optimizing fitness—a derivation of Bayes’s rule as an optimal response

We can use decision theory to determine the optimal response for an E. coliin an environment that has two possible states, one low and one high in sugar.
Using the measurements of Dekel and Alon (2005) of the cost and benefit to the growth rate of expressing an operon to catabolize sugar we can show, perhaps
surprisingly, that the growth rate of the bacterium is optimized if its response follows Bayes's rule. Let Z(S) denote the level at which the bacterium expresses
the operon when the intracellular concentration of sugar is S. We then use gi,w(Z) to denote the growth rate when the operon is expressed at level Zand the
environment is in the state low in sugar, and ghign(£) for the growth rate when the environment is in the state high in sugar. The expected growth rate of the
bacterium, g, can be obtained by integrating the growth rate over all possible states of the environment and all possible intracellular concentrations of sugar,
S, weighted by the probabilities of the environmental states and the concentrations of sugar:

8= [ dSlBion (Z(S))P(S. 1ow) + i (Z(5))P(S, high)
To find the function Z(S) that maximizes this expected growth rate, we use the calculus of variations. The optimal level of expression of the operon satisfies:

98w (Z(S)) Ognign(Z(S))
0Z(S) 0Z(S)
We use equations (3) and (5) for the growth rates in the two environmental states, and by doing so assume that the intracellular concentration of sugar is
proportional to the extracellular concentration, following Dekel and Alon (2005). In equation (3), we have further assumed that the concentration of sugar is so
low in the state low in sugar that any benefit of synthesizing Zis substantially outweighed by its cost. From Figure 3B, this assumption implies that, for the sugar
lactose, the probable concentrations of extracellular lactose in the state low in sugar are less than 0.1 mM. Differentiating equations (4) and (6) with respect
to Z, and substituting above, we find that the optimal value of Z, which we denote Z,y, satisfies:
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where Zy is the wild-type level of expression of the /ac operon, and we will ignore this term. If the most probable concentrations of extracellular sugar in the
state high in sugar are greater than Ky, which is estimated to be 0.4 mM for lactose (Dekel and Alon, 2005), then the permeases importing sugar are saturated,

and ﬁ ~ 1. Consequently, Z,(S) approximately satisfies
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which is Bayes's rule. Although we have made several assumptions, optimizing the expected growth rate also optimizes inference of the extracellular state.

outweighs the benefit, and the optimal expression level is zero.
Above this concentration, the optimal expression increases
with S, although it eventually saturates because of both
diminishing benefit and increasing cost.

Surprisingly, considering a two-state environment—one
state low and one state high in sugar—with each state
producing some distribution of intracellular sugar S, we
can use decision theory and Dekel and Alon’s measurements
to optimize the expected growth rate and derive Bayes’s rule
(Box 2).

Considering benefit minus cost as a measure of fitness may,
however, be too simple. The expression for the lac operon
predicted by Dekel and Alon from equation (7) does not match
in detail the measured level of expression (for bacteria grown
in the absence of glucose; Kalisky et al, 2007). The predicted
optimal curve rises higher than that for wild-type expression,
although with a gentler slope (Figure 3C). By allowing an
environment with a probability distribution for concentration
of sugar, Kalisky et al have improved the prediction by
averaging over this distribution. For their best comparisons,
they use a bimodal distribution similar to a superposition of
the two distributions generated by the two environmental
states proposed by Libby et al (2007). They improve their fit
further by considering stochastic fluctuations in the concen-
tration of the transcription factor controlling the response
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(LacI). Such stochasticity reduces fitness, but only if the
regulatory proteins have concentrations near those that
optimize the growth rate. Otherwise, fluctuations can be
beneficial because cells that by chance happen to grow faster
will dominate the population (Tanase-Nicola and ten Wolde,
2008). Near the optimal growth rate, the deleterious effect of
fluctuations in the concentration of the transcription factor can
be minimized if the cellular response is saturated at those
concentrations of sugar that are most frequent (Kalisky et al,
2007). The DNA-binding site of the transcription factor is
consequently either always occupied or always free. Typical
fluctuations in the concentration of free transcription factor are
buffered either by high concentration of the inducer lactose or
by a large number of active transcription factors (Elowitz et al,
2002).

Other definitions of cost and benefit

That cells may do more than optimizing their growth rate is
also well known in ecology. There, a distinction is drawn
between r and K selection (r and K are variables in the logistic
equation, which models the growth of populations: r is the
maximum possible growth rate and K is the carrying capacity
or maximum size of the population; MacArthur and Wilson,
1967). A typical organism undergoing r selection grows
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quickly and usually lives in stochastic environments where
extensive environmental calamities can occur, but there is
little competition. A typical organism undergoing K selection
lives in a competitive environment and maximizes its
competitive abilities rather than its growth rate (Pianka,
1970). An r strategy, therefore, maximizes the expected growth
rate, whereas a K strategy could minimize the extinction rate or
perhaps the variance in the growth rate. Such issues become
more complex when we consider the effects of decisions made
by other cells.

Although reproduction ultimately decides fitness, we can
also examine the effectiveness of biochemical networks that
do not directly affect growth. Chemotaxis is an attractive
system because its goal—to chemotax towards or away from a
source of a chemical—can be identified. Stochasticity affects
the diffusion of the signal, binding of the signal to any
receptors at the cell surface, signal transduction, and
potentially the motion of the chemotaxing cell itself. Some
organisms, such as E. coli, move by swimming at constant
speed with abrupt stops where they re-orient in a random
direction—a process known as tumbling—and then begin
swimming again. To swim up a chemical gradient, the cell
senses the current concentration of the chemical and compares
it to the concentration sensed earlier (Schnitzer et al, 1990).
If the concentration is increasing, the cell is swimming in the
right direction and tumbling is suppressed. If the concentration
is decreasing, the cell is swimming in the wrong direction and
tumbling happens more often. In principle, cells could sense
concentrations by allowing the chemical to enter the cytosol
and interact with signalling molecules or transcription factors,
as in the examples of sugar metabolism discussed previously.
However, a more accurate strategy is for cells to degrade the
signal at their surface and so prevent re-measurement of
previously observed molecules (Endres and Wingreen, 2008).
Cells may also use stochasticity to improve their chemotaxis:
bacteria swimming in the wrong direction may re-orient faster
by rotational diffusion rather than by actively changing their
motion (Strong et al, 1998).

The accuracy of a decision can also be used to quantify cost.
Andrews and Iglesias (2007) have modelled decision-making
and the chemotactic response of slime moulds. In their model,
the state of the environment is the true angle of a chemical
gradient, 65, up which a slime mould wishes to chemotax.
A chemotaxing cell senses and responds stochastically with
a movement angle 0. If 0, does not equal 6y, the cell does not
chemotax towards the source and receives a cost in fitness,
which Andrews and Iglesias suggest obeys the equation

1
c(6s, 6,) = z[l — cos(0s — 6,)] (8)
Equation (8) is minimal when 6;=0, and maximal when 6,
and 0, are 180 degrees apart. Using a Bayesian approach, they
calculate the expected cost as

c= / d0,d0, P(6,]05)P(8)c(0s, ©,) 9)

where P(0,/6) is a probability distribution describing the
stochastic behaviour of the chemotactic network—the tighter
this distribution is around 6y, the better the chemotaxis—and
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the distribution P(0;) is the cell’s prior knowledge of the
location of the source of the signal. Andrews and Iglesias asked
how accurately does 0, need to reflect 6, if the expected cost is
to be less than some threshold D, a standard information-
theoretic calculation (Cover and Thomas, 2006). To predict
behaviour, they use the distribution P(6,/6;) that has the
maximum allowed cost of D and so minimizes the correlation
(or, more correctly, the mutual information) required between
0, and 6. Interpreting the degree of polarization of the cell’s
morphology as proportional to the cell’s degree of prior
knowledge, their predictions are quantitatively consistent with
observations with the slime mould Dictyostelium discoideum.
Unpolarized cells respond as if they have no a priori
assumptions and, for example, change directions more
frequently than polarized cells (Andrews and Iglesias, 2007).

Decisions at the level of populations

So far we have looked at decision-making strategies as they
benefit isolated individuals, but cells and organisms typically
exist in populations. Interactions between organisms or
between organisms and their environment can change the
fitness of different strategies over time. Decision theories with
assumptions of a single decision-maker and fixed costs and
benefits are no longer appropriate (Nowak and Sigmund,
2004). Although we have argued that decision-making strate-
gies can be understood as maximizing or near-maximizing
the reproductive success of the individual, competition may
force organisms to use strategies that appear suboptimal. For
example, Pfeiffer et al (2001) have argued that a trade-off exists
between the yield of ATP and its rate of production during the
metabolism of sugars. Fermentation can produce ATP at a
faster rate than respiration because it produces fewer ATP
molecules per sugar molecule. In situations where organisms
are competing for a common, extracellular resource, they
should, therefore, use fermentation. When metabolizing
internal resources, they should use respiration. This prediction
is borne out for some microorganisms, such as S. cerevisiae,
which use fermentation to produce ATP while decomposing
organic matter even in the presence of oxygen (Pfeiffer et al,
2001). A strategy with lower fitness in environments without
competition—fermentation is inefficient use of a resource—
can become successful in environments with competition.

Optimizing inclusive fitness

Such phenomena, where fitness of a strategy depends on the
strategies adopted by the rest of the population, are best
analysed using ideas from evolutionary theory. Natural
selection can be viewed as maximizing not the fitness of an
organism, but its inclusive fitness (Hamilton, 1964). The
reproductive success of an organism need not only come
through the individual organism’s own reproduction, but also
through reproduction of related organisms because they share
the genes of the individual. Inclusive fitness includes the direct
fitness of an organism, offspring generated by the organism’s
own behaviour, and its indirect fitness, the offspring of
neighbours, which survive because of the actions of the
organism, but their contribution to inclusive fitness is
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Box 3 Decisions in populations—Hamilton’s rule

Hamilton’s rule determines whether natural selection favours
cooperation. Here we follow the derivation of Queller (1992) and
Frank (1998). For an organism, i, in a population, we let z; be the
probability that the organism will try to cooperate when meeting
another organism. Let us suppose that N genes encode the
cooperative behaviour and that organism /i has x;; copies of gene j.
Qur first assumption is that z; can be written as a linear function of
the x;;

N
Zi— Z bjxl-j + 90;
=1

for constant b;. This equation for z; is usually interpreted as a linear fit
across a population of z to the number of copies of all the required
genes. Then §; is the fitting error, or residual, for organism /, and the
average of & over the population is then zero—as we might expect
because the probability of cooperation should also be zero if all the X;;
are zero and the individual has no genes for cooperation. If we write
8 = > bjx;, then Z= g with averages taken over the population.
Thejequation of Price (1970) describes natural selection. In the
simplest scenario, the difference in the mean value of a character such
as g between an ancestral and a descendant population, Ag, obeys

— Cov(w, g
ag = W8
with w; the fitness of organism 7 and Cov denoting covariance. For
cooperativity to be selected, we require the probability of trying
cooperation to increase in the descendant population and Az > 0, but
Az = Ag because z = g, and so we need only

Cov(w, g§)>0
Our second assumption is that the fitness of organism i can be
written as a linear function of g; and of the average value of g; for the
local group of organisms with which organism i interacts. We denote
this average value as G;. We assume that

w; :ﬁ]+’l(gi *g) S B(Gi*G) + &
with, as a third assumption, o and B being constant across the
population. This equation is also often interpreted as a linear fit of wto
g and G with ¢;as a residual. The residual is not expected to co-vary
with either gor G. If we insert this expression in the Cov(w, g), we can
see that cooperative behaviour and the genes for cooperation will be
selected if

aCov(g, 8) + B Cov(g, G)>0.

Now o describes how the fitness of organism J directly changes
because of its cooperative behaviour to others. We expect this
cooperative behaviour to be costly to organism J, and so write oo = —c¢,
with ¢ the cost to fitness. Organism i gains in fitness from the
cooperative actions of others, however, and so we can write = b,
with b this benefit to fitness. Consequently, we have

Cov(g, G) b

Cov(g, 8)
as our condition for selection. By interpreting the ratio of covariances
as the coefficient of relatedness, r, we have Hamilton’s rule. The
history of this approach is described by Gardner and Foster (2008).

>C

weighted by the degree of relatedness such offspring have with
the organism. Decision-making strategies that appear sub-
optimal because of a suboptimal direct fitness of the individual
can be understood as optimal because of their contribution to
increasing the individual’s indirect fitness. Such cooperative
strategies, which benefit other cells in the population, but are
possibly detrimental to the decision-maker, can be described
by Hamilton’s rule (Hamilton, 1964; Box 3). If b is the benefit
to the fitness of the cooperation’s recipient, c is the cost to the
fitness of the cooperator, and r is a measure of the genetic
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relatedness of the recipient and the cooperator, then a
cooperative strategy will be favoured by selection if

rb>c (10)

A cooperative strategy can only be selected if there is genetic
relatedness (r>0) and if the benefit is sufficiently high and the
cost is sufficiently low.

Equally influential is the concept of an evolutionarily stable
strategy (Maynard Smith and Price, 1973), which formalizes
what we mean by an optimal strategy. A population
implementing an evolutionarily stable strategy is optimal in
that it cannot be invaded by a small number of organisms
implementing an alternative strategy.

Research has focused on understanding the decision-
making strategies in populations of microorganisms (Keller
and Surette, 2006; West et al, 2006). Experimentally determin-
ing the cost and benefits appearing in Hamilton’s rule is
difficult, but it is relatively straightforward to change the
degree of relatedness in populations of microorganisms: for
example, by seeding the population with either a single clone
or two clones with opposing phenotypes, or by either
preventing or allowing mixing of growing subpopulations.
Such manipulations should, however, not alter the cost and
benefit of a cooperative strategy. It is important, though, to be
aware that generalizing from results obtained under laboratory
conditions may not always be appropriate. The effects of
stochasticity have also attracted attention, and we will begin
by looking at such effects in bet-hedging decisions.

Bet-hedging strategies

A bet-hedging strategy is usually one in which different
individuals of an isogenic population persistently exhibit
different phenotypes. It can be defined as a phenotypic
polymorphism that reduces the variance in fitness of a
population of cells while possibly increasing the variance in
fitness for certain individuals within the population (Seger and
Brockmann, 1987). How are such strategies implemented by
the cell? Biochemically, the gene or protein network that
determines the phenotype must be bi-stable or, more generally,
multi-stable. It must have several distinct, heritable steady
states. One example is phase variation in bacteria, where cells
decide between expressing different phenotypes or ‘phases’.
Although the biochemistry generating the phenotypes is
diverse, ranging from site-specific rearrangements of DNA to
epigenetic mechanisms, the strategy of phase variation is an
example of convergent evolution having been adopted by
many bacterial species (Avery, 2006).

Stochastic fluctuations in a multi-stable network can be both
advantageous and disadvantageous. Too large, and they can
undermine the dynamical stability of each steady state,
causing cells to fluctuate too rapidly from one phenotype to
another (Hasty et al, 2000; Acar et al, 2005). For example,
much of the genetic regulation active in lysogenous phage
lambda is believed to reduce stochastic fluctuations into the
lysogenic state (Aurell et al, 2002; Santillan and Mackey,
2004). Yet, in general, decision theory predicts that random
strategies can outperform deterministic strategies whenever
some aspect of the environment is unobserved (Bertsekas,
2005). A cell can never accurately sense all relevant variables
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in the environment suggesting that the potential for stochastic
behaviour is high, and not present under only special
conditions. Indeed, without such fluctuations it may be
impossible to generate different phenotypes within the
population at all.

Although bacteria exploit stochastic fluctuations to generate
phase variation and to determine the lifetime of each phase,
how much stochasticity is necessary and how should this
stochasticity relate to variation in the environment? Surpris-
ingly, even fully stochastic switching with no sensing of the
environment can be evolutionarily stable, but only if the
environment changes infrequently (Kussell and Leibler, 2005).
Assuming an alternative strategy that continuously senses the
environment with a concomitant continuous cost in metabolic
energy, Kussell and Leibler showed mathematically that
stochastic switching without sensing is stable provided the
state of the environment is not too uncertain, and related the
extent of that uncertainty to the environment’s entropy. The
cost of sensing then outweighs the benefit because the
environment changes rarely and most sensing is superfluous.
In agreement with earlier predictions (Lachmann and Jablon-
ka, 1996; Thattai and van Oudenaarden, 2004; Wolf et al,
2005), they proved that the optimal level of stochasticity or,
more exactly, the optimal rate of switching is proportional to
the probability of a change in the state of the environment and
inversely proportional to the average lifetime of an environ-
mental state (Kussell and Leibler, 2005). Such a choice
balances the advantages of quickly switching to the optimum
phenotype for the current environmental state and the
disadvantages of quickly switching from this optimum
phenotype before the state of the environment changes (Wolf
et al, 2005). Wolf et al (2005) included stochastic sensing,
allowing environmental transitions to be unobserved, ob-
served only after long delays, or the environmental state to be
incorrectly identified. When the costs of sensing are negligible,
they found that the strategy of fully stochastically switching is
only evolutionarily stable if the stochasticity impeding sensing
is strong enough to effectively prevent sensing of environ-
mental transitions. For example, if the delay in signal
transduction is sufficiently long that the measured environ-
mental state no longer corresponds to the current environ-
mental state (Wolf et al, 2005).

Many of these predictions have been verified experimen-
tally. Using a synthetic bi-stable genetic network in E. coli,
Kashiwagi et al (2006) showed that stochastic fluctuations can
cause cells to switch into the state most favoured by the
current environment. Acar et al measured the growth rate of a
yeast strain engineered to switch stochastically between two
states in an environment that periodically varies between two
environmental states: one favouring the growth of one cellular
state and the other favouring the growth of the other cellular
state. As predicted, they found that fast switchers grow faster
in rapidly varying environments and that slow switchers grow
faster in slowly varying environments (Acar et al, 2008).
Natural examples include the slow-growing persister cells in
isogenic bacterial colonies (Balaban et al, 2004; Kussell et al,
2005). Such cells are able to resist some antibiotics, and, after
removal of the antibiotic, the surviving persisters give rise to a
colony that again has a small fraction of persisters because
stochastic transitions occur between the persister and the
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usual cellular state (Balaban et al, 2004). Another bet-hedging
strategy is followed by Bacillus subtilis. Under poor nutrient
conditions, most cells commit to sporulation, but a small
fraction instead become ‘competent’ (Maamar and Dubnau,
2005; Smits et al, 2005; Suel et al, 2006). They are then able to
take up DNA from the environment betting that new DNA will
enable growth despite the poor conditions. This decision to
become competent is made stochastically: reducing intracel-
lular stochasticity reduces the fraction of competent cells
(Maamar et al, 2007; Suel et al, 2007).

Bet-hedging can usually be understood as cooperative
behaviour. Consider persister cells. Although while in the
persister state, cells have the potential to survive some
catastrophes, they grow only very slowly, and there is no
guarantee that a suitable catastrophe will ever occur. Why
should cells then enter the persister state? A strain with a lower
percentage of persisters could potentially invade because its
faster growth may generate a greater number of persisters at
the next catastrophe. Bacterial cells are usually surrounded by
relatives in a clonal group. Although their direct fitness is low
in the persister state, unless a catastrophe occurs, they increase
their indirect fitness by freeing resources for other cells
(Gardner et al, 2007). Indeed, modelling predicts that the
number of persister cells should increase as resources become
scarce. The cost to persister cells of their decision becomes less
because the growth rate of non-persister cells decreases and
the benefit to non-persister cells increases because resources
are limiting (Gardner et al, 2007).

The tragedy of the commons

Problems of cooperation occur most often when different
organisms share a common resource (Hardin, 1968; Rankin
et al, 2007). Organisms can ‘cheat’ by using the resource
inefficiently or by not contributing as much to the resource as
others and yet still receive almost as much benefit because the
cost of their cheating is shared by all the organisms. Such
cheaters can substantially lower the fitness of the population
as compared with a population of cooperators (Figure 4). An
example of this ‘tragedy of the commons’ is cancer.
Microorganisms often contribute to a common pool of
molecules (West et al, 2006). For example, a cytosolic pool of
viral proteins is created when many viruses infect a single host
cell, but a mutant virus can evolve that sequesters proteins
from the pool, but contributes little, leading to loss of fitness
for all viruses (Turner and Chao, 1999). Many bacteria
communicate by releasing small, diffusible, autoinducer
molecules (Keller and Surette, 2006). Detection of autoindu-
cers often leads to expression of exoproducts, such as
extracellular enzymes, nutrient-scavenging molecules, and
toxins, and to further synthesis of the autoinducers. At high
densities of cells, this positive feedback allows such quorum
sensing to generate substantial production rates of exopro-
ducts, a common resource, but quorum sensing too is
vulnerable to mutants that avoid the cost of synthesizing the
exoproducts, yet still benefit from them (Diggle et al, 2007).
The fitness of such cheaters decreases with frequency because
the common pool shrinks as fewer and fewer individuals
contribute. Nevertheless, by competing a wild-type and a
cheater strain of Pseudomonas aeruginosa under different

© 2009 EMBO and Macmillan Publishers Limited



Figure 4 The tragedy of the commons. Blue cooperator cells secrete enzymes,
shown by a pentagon, which hydrolyse an extracellular metabolite, shown as two
joined circles, into a form that cells can import (two separated circles). The
enzymatic reaction is highlighted within the dotted circle. Green cheater cells
benefit from the cooperative action of synthesizing the enzyme by importing the
hydrolysed molecules. They do not, however, pay the associated cost because
they do not synthesize the enzyme themselves, and hence have a growth
advantage. As the number of cheater cells grows, the resource is used less and
less efficiently, and the fitness of the population of cells decreases.

conditions of relatedness, Diggle et al (2007) showed that high
relatedness favours the cooperative, quorum-sensing strategy.
Cheaters, intriguingly, reduce virulence in P. aeruginosa
because they decrease the rate of production of virulence
factors (Rumbaugh et al, 2009).

Both cheaters and cooperators can stably coexist. Greig and
Travisano (2004) considered the strategy to express the SUC
genes used by S. cerevisiae. These genes encode the enzyme
invertase, which hydrolyses sucrose, but, unusually, this
enzyme is secreted extracellularly and, therefore, potentially
benefits all nearby cells. Greig and Travisano argue that the
observed high degree of polymorphism both in the number of
SUC genes and their activity arises because of selection for
cheaters, whereby some cells with one polymorphism do not
synthesize invertase, but benefit, instead, from its expression
by others with a different polymorphism. Gore et al (2009)
extended these ideas. By competing two strains of yeast, one, a
cooperator that expresses invertase, and another, a cheater
that does not, they demonstrated that small numbers of
cooperating cells can invade a population of cheaters and that
small numbers of cheaters can invade a population of
cooperators. Both strategies can coexist: the evolutionarily
stable strategy is a mixed strategy. Cooperators benefit slightly
more from the invertase they express than nearby cheaters and
can more than recover the cost of synthesizing the enzyme. As
the number of cooperators grows, more sucrose is available to
the cheaters whose growth rate overtakes that of the
cooperators because the cheaters do not synthesize invertase.
With many cheaters, however, their growth rate slows as
compared with that of the cooperators because little hydro-
lysed sucrose is available. Invertase converts sucrose into
glucose and fructose, and wild-type yeast cells repress the
expression of invertase when extracellular glucose levels are
sufficiently high. Consequently, a wild-type cell will cooperate
in a population of cheaters and will cheat in a sufficiently large
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population of cooperators (Gore et al, 2009). A similar
coexistence can occur with two strains of yeast competing
for a common source of glucose. Following Pfeiffer et al (2001),
MacLean and Gudelj (2006) competed a strain that was only
able to respire against a strain that could both respire and
ferment. Despite the fermenter strain expending the glucose
faster, the cooperating respirer strain was not outcompeted
because the fermenters are punished through the toxic by-
products (mainly ethanol with some acetate) they excrete.
Although these by-products diffuse away, they can accumulate
rapidly when the density of fermenters is high (MacLean and
Gudelj, 2000).

Cooperating with other cooperators: structured
populations

A cooperative strategy is more likely to be evolutionarily stable
if an organism is often surrounded by related organisms
because this spatial structure increases r in Hamilton’s rule.
Ackermann et al (2008) considered self-destructive coopera-
tion where some cells decide stochastically on self-destructive
behaviour for the benefit of others. Such cooperation is in
general not evolutionarily stable because cheaters that never
act to benefit others can always invade and dominate. The
situation changes, however, in a spatially structured environ-
ment. For example, pathogenic bacteria infect a population of
hosts and each host is spatially isolated. Ackermann et al
showed that if the number of cells infecting a host and the
probability of cheating is small then cooperation is evolutio-
narily stable because cooperators are likely to find themselves
with other cooperators. Cheater cells, if present, will dominate
in any one host, but can then be invaded by cooperators in a
new round of hosts. A possible example is Salmonella
typhimurium, which must remove intestinal microflora as
competitors. To do so, S. typhimurium triggers an inflamma-
tory response in the human gut by invading gut tissue. Cells
that invade gut tissue are, therefore, benefiting other cells and
behaving cooperatively. This cooperation is also self-destruc-
tive because those S. typhimurium that do invade are usually
killed by the innate immune defences of the intestine
(Ackermann et al, 2008).

Stochasticity can enhance cooperation in structured popula-
tions. If subpopulations of cells grow independently, the global
proportion of cooperating cells can increase even though the
number of cooperators within each subpopulation decreases
(Chuang et al, 2009). This apparently paradoxical situation
arises if those subpopulations with a higher proportion of
cooperators grow faster than those with a lower proportion
because fast-growing subpopulations dominate global
averages. Such a global increase in cooperators requires
exponential growth and sufficient variance in the composition
of the initial subpopulations (Chuang et al, 2009).

Although limited dispersal leading to structured populations
where cells grow near their relatives can favour cooperation, it
need not because scarce resources can cause related cells to
compete and so reduce b in Hamilton’s rule. Siderophores are
molecules secreted by many microorganisms to scavenge iron.
They form an extracellular, common pool, and mutant cheater
cells can evolve that benefit from the secreted siderophores,

Molecular Systems Biology 2009 11



Strategies for cellular decision-making
TJ Perkins and PS Swain

but not synthesize their own. Griffin et al (2004) showed that
cooperative production of siderophores by P. aeruginosa was
favoured both by higher relatedness among neighbouring cells
and by competition occurring globally rather than locally,
which reduces competition between relatives.

Conclusion

We believe that ubiquitous stochasticity makes cellular
decision-making probabilistic. Here, we have reviewed recent
work showing that cells can, in principle, biochemically
implement statistical inference for estimating environmental
states and that such an interpretation is both qualitatively
and quantitatively consistent with measured responses of
gene-regulatory and signalling networks. Furthermore, cells
can act with anticipation, making regulatory decisions that,
although suboptimal for their current environment, are
expected to be advantageous after an imminent environmental
change. Key to decision-making are the relative costs and
benefits of different responses, which allow the optimality
of responses to be tested experimentally. Finally, evolutionary
theory shows how interactions within populations of organ-
isms can lead to suboptimal behaviours, both for some
individuals and for the entire population. Together, these
examples demonstrate that human-developed theories of
decision-making under uncertainty apply at the cellular
level as well. This approach to understanding cellular
behaviour is in its infancy, but we believe many discoveries
are yet to come.

The conjecture that cellular networks have evolved to
implement statistical and decision-theoretic computations is
challenging to verify experimentally. Rather than focussing on
characterizing one strategy, it is better to compare different
strategies, perhaps through competition experiments, but
developing, for example, bacterial strains with rival strategies
is difficult. Often we know little of the environmental statistics
that held sway during the evolution of an organism and to
which it expects to respond. One means to address this
problem is microevolution experiments where, by controlling
the environments that a population of cells experiences, we
know the sensing and decision-making challenges the cells
face (Dekel and Alon, 2005; Tagkopoulos et al, 2008; Mitchell
et al, 2009). The genomes of the evolved organisms can be
sequenced to determine how the decision-making network has
evolved or predictions of decision-making behaviours based
on the presumed strategy of the cells can be verified (Dekel and
Alon, 2005; Acar et al, 2008). We can investigate the potential
strategies implemented by cells by determining what proper-
ties of time-varying signals they measure using microfluidic
devices (Bennett et al, 2008; Hersen et al, 2008; Mettetal et al,
2008). Synthetic biology is another approach by
which our understanding of cellular decision-making can be
tested by synthesizing and analysing in vivo a biochemical
network with a desired decision-making strategy (Chuang
et al, 2009).

Our approach to cellular decision-making highlights the
importance of determining as best as possible the native
environment of an organism and of studying both individual
cells and populations. The results of Tagkopoulos et al (2008)
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and Mitchell et al (2009) show that cells may not respond to
the actual signal sensed, but may instead respond in
anticipation of some event historically correlated with the
signal. We need to investigate responses to signals of a
magnitude that is appropriate to the cell’s environment.
Such magnitudes are usually lower than those applied in
the laboratory and, as such, can mask cooperation, where
some cells may not respond to low signal to allow others to do
so, or cheating, where cells use the signal rapidly to
outcompete others even though a rapid response reduces the
benefit gained by all. Similarly, we may need to mimic the
spatial structure of the native environment to understand why
some cooperative strategies persist. The importance of
stochasticity in cellular decision-making highlights the
importance of studying single cells. In general, random
strategies can outperform deterministic strategies if some
aspect of the environment is unobserved, even without
competition (Bertsekas, 2005). Such exploitation of stochas-
ticity is difficult to detect in populations of cells because
stochastic effects are averaged at the level of the population.
Alternatively, cells often regulate away stochasticity in
the signals they sense. To understand how this regulation
occurs biochemically, we need to measure the responses of
individual cells to signals that fluctuate as cells have evolved
to expect.

With a few exceptions (Vilar et al, 2003; Tanase-Nicola and
ten Wolde, 2008), an omission of present research is to connect
sensing strategies at the molecular level to decision-making
strategies at the population level. Most studies on bet-hedging
and cooperativity, for example, do not even consider the role of
sensing. Such a link is necessary to unite systems biology with
evolutionary biology and to fully understand biological design
(Loewe, 2009). Cellular sensing strategies, for example, have
evolved in environments where interactions with other
organisms are important: S. cerevisiae even though it does
not secrete siderophores still expresses receptors for side-
rophores synthesized by other microorganisms. Analysing
such inter-organism interactions is a strength of evolutionary
biology. Defining the limits of adaptation determined by
biochemical networks and finding the functional form of the
cost, benefit, and fitness of a decision-making strategy are
necessary for an understanding at an evolutionary level, yet
are all strengths of systems biology.

A number of other areas have received little attention. Both
deterministic dynamics and infinite populations are often
incorrectly assumed when determining evolutionarily stable
strategies. Opportunity costs, where one decision can preclude
another by consuming resources, are usually ignored. So too is
the ability of cells to influence the state of their environment—
often viewed as the main purpose of decision-making in
artificial intelligence and control theory. Such abilities can
generate systems with no evolutionarily stable strategy. For
example, Kerr et al (2002) consider three strains of competing
bacteria: a colicinogenic strain that can release a toxin, colicin,
into the environment; a resister strain that has mutated the
membrane proteins that translocate the toxin; and a sensitive
strain. Under certain conditions, the evolutionary dynamics of
this system oscillate with time. The resister strain can outgrow
the colicinogenic strain because resisters do not carry the
plasmid necessary to synthesize the toxin. The resister
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bacteria are themselves outgrown by the sensitive strain
because this strain has fully functioning membrane proteins
that, although sensitive to the toxin, also uptake nutrients.
Finally, the sensitive strain can be outgrown by the colicino-
genic strain because they are not resistant to colicin—a ‘rock-
paper-scissors’ scenario (Kerr et al, 2002).

We also do not know the fidelity required of sensing. Often a
cell can improve fidelity by, for example, increasing the
number of receptors, but energy and resources must be
expended to synthesize, operate, and maintain more complex
signalling networks. Fidelity can also be increased by taking
more time to detect and analyse stochastic signals, but in
rapidly fluctuating or competitive environments such time
may not be available. These trade-offs have been little
explored, although the physics of sensing at least determines
a lower bound on what is achievable (Berg and Purcell, 1977;
Bialek and Setayeshgar, 2005; Tostevin et al, 2007). A related
line of research has focused on the reliability of a response by
investigating its robustness or insensitivity to changes in the
values of parameters (Rao et al, 2002; Stelling et al, 2004),
particularly for chemotaxis (Barkai and Leibler, 1997; Alon
etal, 1999; Yi et al, 2000; Kollmann et al, 2005), developmental
networks (von Dassow et al, 2000; Eldar et al, 2002; Albert and
Othmer, 2003; Manu Surkova et al, 2009), and the immune
response (Feinerman et al, 2008). Such changes result from
differences in the intracellular environment between cells and
in individual cells over time. For example, many parameters in
models are often implicit functions of the concentration
of another intracellular species, which itself undergoes
fluctuations with its own characteristic lifetime (Shahrezaei
et al, 2008).

Not all decision-making need be sophisticated. Cells
include, for example, many intracellular homeostatic mechan-
isms (Alberts et al, 2007). In other cases, the need to respond
quickly may be overriding. For example, we reflexively pull
our hand away from a hot stove without careful contemplation
of the temperature of the stove or the likely damage our hand
will receive. The importance of minimizing injury trumps all
other concerns. Cells may have similar ‘reflexes’ for dealing
with potentially dangerous situations. A possible example is
the response to osmotic shock in S. cerevisiae (Hohmann,
2002).

Nevertheless, because stochasticity and incomplete
information are so pervasive at the cellular level, we predict
that strategies from statistics, decision theory, and evolution-
ary theory should be widely observed when cellular networks
are viewed at the level of information processing and as
such should hold much explanatory power. Despite being
implemented in different organisms and with different
biochemistry, we believe that through functional conservation
or convergent evolution, the number of such strategies
will be comparatively small. Just as interactions between
proteins and genes can be coarse-grained to a level of
interacting functional modules (Hartwell et al, 1999), with a
limited number of functions performed by those modules, a yet
higher level of coarse-graining is to determine how these
functional modules come together to create sensing and
decision-making strategies, and, higher still, how these
strategies are linked to produce adaptable and evolvable
organisms.
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