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Predicting metabolic adaptation from networks of
mutational paths

Christos Josephides' & Peter S. Swain® '

Competition for substrates is a ubiquitous selection pressure faced by microbes, yet intra-
cellular trade-offs can prevent cells from metabolizing every type of available substrate.
Adaptive evolution is constrained by these trade-offs, but their consequences for the
repeatability and predictability of evolution are unclear. Here we develop an eco-evolutionary
model with a metabolic trade-off to generate networks of mutational paths in microbial
communities and show that these networks have descriptive and predictive information
about the evolution of microbial communities. We find that long-term outcomes, including
community collapse, diversity, and cycling, have characteristic evolutionary dynamics that
determine the entropy, or repeatability, of mutational paths. Although reliable prediction of
evolutionary outcomes from environmental conditions is difficult, graph-theoretic properties
of the mutational networks enable accurate prediction even from incomplete observations. In
conclusion, we present a novel methodology for analyzing adaptive evolution and report that
the dynamics of adaptation are a key variable for predictive success.
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lucidating the factors that influence the emergence, diver-

sity, and stability of microbial communities is a central

interest in both ecology and evolution'. To predict and
control community structure and function, it is necessary to
understand how interactions between microbes and the envir-
onment manifest as selective pressures driving microbial adap-
tation and diversification?.

Microbes frequently grow on mixtures of metabolic resources
where competition for these growth-limiting substrates is a ubi-
quitous selection pressure. Surveys have revealed that microbes
do not simultaneously use all available substrates. Instead, each
species in a community specializes to a few substrates> . This
observation is anticipated by ecological (resource-ratio) theory,
which posits that constraints in the capacity of an organism to use
multiple substrates are necessary for diversifying selection in
homogeneous environments®, and is supported by competition
experiments where trade-offs in using one substrate over another
maintain metabolic polymorphisms®~1

The conditions under which a microbial population can invade
another, and whether a stable community can be formed, are the
subjects of ecological invasion analysis. These analyses typically
either assume competition between infinitesimally-varying phe-
notypes!'!> 12 or are not concerned with the mutational paths'? 14
that may be generated through successive mutations and inva-
sions. Advances in experimental evolution, however, now enable
tracking of microbial lineages for hundreds of generations!* 1
and expose how sequences of mutations shape the evolutionary
process through competition between possibly disparate pheno-
types®. Moreover, these experiments reveal evolutionary trajec-
tories with both parallel and uni%ue dynamics'”> 18, as well as
variability in long-term outcomes!".

To investigate how the interplay between metabolic con-
straints, environmental conditions, and the distribution of
mutations influences the adaptation process, we developed a
model that combines microbial chemostat ecology with an evo-
lutionary process. Microbes compete at the ecological level for
two substrates that can be growth-limiting, and we incorporate a
phenomenological, metabolic trade-off between the consumption
of one substrate relative to the other. Cells inherit this phenotype
through nearly-faithful (clonal) reproduction, but rare mutations
can change a cell’s degree of specialization for the substrates. We
do not restrict the size of the effect of mutations so that, in the
extreme case, any phenotype can mutate to any other. Relaxing
the common assumption of small mutations implies that standard
methods from evolutionary invasion analysis'"> 12 are insufficient
to describe the full repertoire of adaptation dynamics. We develop
a new methodology with which we determine and analyze all
mutational paths over a finite set of phenotypes and describe both
transient and long-term evolutionary behavior.

We begin by introducing the model of chemostat ecology,
which we then embed in a Markov process of mutation-limited
adaptation to complete the eco-evolutionary model. We show
that evolutionary adaptation that is generated by rare mutations
can be visualized as a network of mutational paths connecting the
states of the microbial community. We next analyze the Markov
process to determine the possible long-term behaviors and show
that multiple evolutionary outcomes emerge, including quasi-
periodic outcomes and outcomes with more than one exclusive
stationary state. We show that these outcomes are not restricted
to distinct environmental conditions and that small environ-
mental perturbations can change one type of outcome to another.
In spite of this sensitivity to environmental conditions, the pro-
cesses that lead to each evolutionary outcome have characteristic
dynamics of adaptation, which are reflected in graph-theoretic
properties of the mutational paths. Finally, we show that evolu-
tionary outcomes can be predicted using these network properties
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from incomplete observations of evolving microbial communities
—even without knowledge of environmental conditions.

Results
Microbial ecology in the chemostat with two substrates.
Microbial evolution is often studied in chemostats, which main-
tain long-term cellular growth at a rate fixed by the experimenter,
and we focus on a model of microbial ecology suitable for che-
mostats'® 2, The chemostat’s environment is controlled through
the choice of metabolic substrates, and to investigate microbial
metabolic adaptation, we extend the standard model?! to include
two growth-limiting substrates, which we name u and v (Fig. 1a).
We follow the typical assumption that all other necessary nutri-
ents are provided in excess and do not limit growth. Both sub-
strates are added continuously to the chemostat at influx rates
that the experimentalist determines and microbes grow in pro-
portion to the substrate concentrations. The two substrates are
individually sufficient for growth—i.e., they are perfectly sub-
stitutable??. The chemostat is continuously diluted at a constant
rate, which is the same for both microbes and substrates.
Therefore, microbial populations must grow at least as fast as the
dilution rate to survive being washed out (to extinction), and
population growth exactly equals the dilution rate at steady-state.
The chemostat is well-mixed through stirring, which eliminates
the spatial component of the environment and facilitates the
development of simpler mathematical models (Methods section).
In total, the ecological model is described by nine environ-
mental parameters: the chemostat’s dilution rate; the influx rates
of the two substrates into the chemostat; the two maximal rates of
cellular import for the substrates; the metabolic rates for each
substrate once imported into a cell; and the yield of each substrate
(an integer number of incremented growth states per unit of
substrate metabolized).

A cellular trade-off to constrain metabolic specialization. Cells
in the chemostat encounter both u and v substrates but cannot
simultaneously specialize to using both. To investigate how a
metabolic constraint affects adaptation®®, we consider a simple
phenomenological trade-off between the ability of a microbe to
import and consume u substrate molecules compared to its ability
to import and consume v substrate molecules from the envir-
onment. We parameterize the metabolic specialization of each cell
—its phenotype—by a number, s, between zero and one: values
near zero indicate that the cell specializes to v; values near one
indicate u specialization (Fig. 1). Cells inherit their phenotype
(their value of s) from their parent nearly always without varia-
tion through clonal replication and we assume that cells cannot
spontaneously change their phenotype (Fig. 1b).

We can interpret the metabolic specialization, s, in two ways. In
the first interpretation, cells can always import both substrates,
but increase the rate of import for u at the expense of decreasing
the import rate for v. The maximal rate of import for u is
multiplied by s; the maximal rate of import for substrate v is
multiplied by (1 —s) (Supplementary Note 1). Such a constraint
may arise if, for instance, a finite intracellular resource is shared
between the production of the u and v permeases®*~2® or through
antagonistic pleiotropy® 7 ?7. In the second interpretation, cells
adopt a mixed strategy (following evolutionary game theory?®) of
randomly switching between two metabolic programmes, each
exclusive to only one substrate. Then, the probability of adopting
the u metabolic program is s and the probability of adopting the v
program is (1 —s) (Supplementary Note 2).

We model the microbial life cycle through a sequence of
import and metabolism of substrates and a corresponding growth
in biomass. Cells import the u and v substrates at rates
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Fig. 1 Modeling microbial ecology in the chemostat with a metabolic trade-off between two substrates. a The chemostat is a homogeneous environment.
The two substrates (u and v) are added continuously, and cells and substrates are diluted at a constant rate. b Cells specializing in using one substrate
cannot also specialize in the other. The metabolic specialization of each cell is parameterized by a number, s, between zero and one: values near zero
indicate a v-specialist; values near one indicate u-specialist; intermediate values are generalists. € To replicate, cells must progress through a series of
discrete states of growth by metabolizing substrates. The yield of a substrate is the amount by which a cell’s state of growth increases by metabolizing the
substrate. Cells replicate when their growth state exceeds a critical value. When a cell encounters a u substrate molecule, the molecule is imported with
probability of s; when a cell encounters a v substrate molecule, the molecule is imported with a probability of (1-s). d A rare mutation leads to competition
between the (high abundance) resident phenotype and the (low abundance) invading phenotype and has three possible qualitative outcomes

proportional to the concentrations of these substrates in the
chemostat, and the imported substrates are metabolized to give
biomass to the cell, which divides once a threshold of biomass is
crossed. We therefore structure the microbial population into
discrete states of growth through which the cell progresses before
replicating. Accordingly, cells that metabolize u and v molecules
transition to a higher state of growth by an integer amount of
states, which we call the substrate’s yield, and replicate when they
exceed a maximum growth state (Fig. 1c).

Mutation-limited adaptation as a Markov process. In our
model, microbes will almost always produce offspring that inherit
their parents’ metabolic specialization, but, rarely, a mutation
may result in a phenotypically distinct population that will
compete with the (resident) parent population or community. We
follow the theory of adaptive dynamics to include phenotypic
mutations only on evolutionary timescales' 2 i.e., mutations
are sufficiently rare that mutants emerge only after the chemo-
stat’s ecology has reached steady-state. This assumptlon is typi-
cally referred to as the ‘weak mutation’ limit*® and separates the
ecological and evolutionary timescales. If, for example, the che-
mostat contains a single phenotypic population then invasion by
a mutant has three possible outcomes: the mutant becomes
extinct, or the resident becomes extinct, or the two phenotypes
co-exist in a community (Fig. 1d). In our spatially homogeneous
model at most two populat1ons can co-exist—following the
competitive exclusion principle’’, which states that at most k
species may co-exist on k growth-limiting substrates.

Simulating the map of invasion events. When adaptation is
limited by the availability of mutations, mutational paths emerge
according to the sequence and outcome of mutation and invasion
events. Successful invasion of a resident community by a new
mutant modifies the chemostat’s environment through changing
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the steady-state levels of the available substrates. Therefore the
context in which future mutation and invasion events occur is
modified through the construction and destruction of ecological
niches® & 18, 23,31

To generate the mutational paths, we first create an invasion
map for the outcome of competitions between all resident
communities and all mutants. To do so efficiently, we developed a
dynamic programming algorithm to simulate invasion events
assuming rare mutations on a discretized phenotype space
(Fig. 2a). Briefly, the algorithm treats the invasion map as a tree:
nodes are communities of phenotypes that can co-exist at steady-
state and are connected by edges representing single mutation
and invasion events. The algorithm iteratively constructs the tree
by perturbing the steady-state of the community at each parent
node to introduce a small population of mutants. The resulting
competition is simulated (Methods section), and the outcome at
the new steady-state is analyzed and recorded as a connected
child node. We terminate a path of mutation and invasion events
if the path arrives at a node that has already been placed in the
tree. By doing so, we avoid redundant simulations because the
sub-trees below two identical nodes are always the same. The
algorithm completes when all paths have terminated (Supple-
mentary Note 3).

We found that invasion fitness—the ability of a phenotype to
invade another when initially rare—was dependent on the
frequency and type of other phenotypes in the environment.
For example, in the example shown in Fig. 2a, phenotype C can
always invade and drive A to extinction in pairwise competition;
the converse is not possible. Phenotypes B and C are mutually
invasible and establish a community of co-residents. This
community can be invaded by phenotype A, driving B to
extinction, thereby establishing a co-existence with phenotype C.
The A,C community would not have been possible without the
intermediate environmental modification effected by phenotype
B. Frequency-dependent effects through niche creation and
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Fig. 2 Generating a Markov process for mutation-limited adaptation. The
procedure has two stages: first, simulating all possible ecological invasions;
second, calculating the probabilities to transition between steady-states as
a result of these invasions. We demonstrate a simple example that has only
three possible phenotypes (labeled A, B, and C). a The invasion map
contains the outcome of all possible competitions between residents and
mutants and all steady-states. An algorithm based on dynamic
programming constructs the invasion map as a tree: nodes represent
steady-states connected via edges that represent mutations and
competitions. Starting with the empty chemostat (root node), each state is
perturbed with a small population of mutants that have each phenotypic
value in turn. The steady-state after every competition is recorded in a child
node and connected to the parent node. The algorithm dynamically
truncates the tree to avoid any recursion (repetition). b To calculate
transition probabilities between resident states, we parse the invasion map
in a with a mutational process. We assume that mutations are uniformly
distributed in the space of phenotypes, but centered on the resident’s
phenotype and with a maximum size of mutation AS,..,. The elements of
the matrix show the conditional probability that phenotype s, generates
mutant phenotype s,. € The Markov process in b visualized through a graph
of its directed network. States are classified as either transient (circles) or
recurrent (squares). d, e As in b, ¢, but with a larger maximum size of
mutation AS.... The recurrent states, as well as the mutational paths of the
process, depend on the distribution of mutations

destruction are stronger when mutations in metabolic specializa-
tion are large because mutants can exploit metabolically disparate
niches.

The invasion map can be thought of as providing two
extensions to the pairwise invasibility plots used in adaptive
dynamics theory!" 12 32, Like adaptive dynamics, our modeling
approach recovers the existence of evolutionary branching points
where an initially monomorphic population branches into two
co-existing populations (Supplementary Fig. 1), but unlike
adaptive dynamics such points require no special treatment. In
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addition, we can investigate non-local evolutionary branching
that occurs after a mutation of large effect and analyze mutational
paths that contain this type of diversification (Supplementary
Fig. 2).

Mutations connect community states. To model adaptive evo-
lution as a Markov process, we define a state of the Markov chain
as a viable population in the chemostat, which is either mono-
morphic with all cells having the same phenotype or dimorphic
(i.e, a community) with two distinct phenotypes that co-exist,
and require the probability of a transition from one state to
another through a single mutation and invasion event (Methods
section). The probability of such a transition is proportional to
the abundance of cells in the source state and to the propensity
with which each cell generates the mutation that effects the
transition to the target state. We will only be concerned with the
sequence of transitions between one state to another and not with
the waiting time between such events. As a consequence, our
approach draws no conclusions about the length of time a
microbial community spends in a particular state and hence does
not quantify the evolutionary timescale. It should be noted,
however, that in an experimental setting we may be able to
observe (or reconstruct) transitions between states without
necessarily knowing the precise time at which the transitions
occurred. Under these circumstances, our methods, which work
without a temporal component, retain their descriptive and
predictive utility.

The availability of phenotypes to mutants partly determines
which of the possible states will follow a current state. To
investigate how the supply of mutations affects adaptation we use
a uniform distribution of mutations in phenotype space centered
on a resident phenotype, s,, with a maximum mutation of size
ASyax which is the largest possible difference between the
metabolic specialization of a parent and that of its offspring.
Mathematically, a mutant with phenotype s, can be generated by
a cell with phenotype s, if Is, — s,/ < AS,,,.. For example, consider
the s=0.75 phenotype, which uses more u substrate than v
substrate. When AS,,,, =0.25, cells with this phenotype can
generate pure u specialists (s = 1) but not pure v specialists (s = 0)
because a larger phenotypic change is required to achieve the
latter. The probabilities of mutation are chosen so that all of the
discrete s, values that can be generated from s, are equally likely
after correcting for boundary effects (Fig. 2b, ¢). The distribution
of mutations affects both the mutational paths and the stationary
behavior of the adaptation process, and we parse the invasion
map with different sizes of maximum mutation to investigate this
dependency. For simplicity, we assume that the rate of mutation
does not depend on the phenotype and that it is constant over
time (Methods section).

Finally, to complete the description of mutation-limited
adaptation as a Markov process, we must choose an initial
distribution of ancestral states. Most laboratory evolution
experiments start with a single isogenic population, and in our
model adaptation begins with equal probability from any viable
population comprising a single phenotype (rather than a
community with two phenotypes).

To determine the long-term evolutionary outcome of an
adaptation process, we classify the states of the Markov process as
either transient or recurrent, following the theory of Markov
processes. Transient states represent microbial communities that
may only be visited once on a mutational path. A recurrent state,
however, will always re-emerge once established, and the
endpoints of mutational paths are always recurrent states
(Fig. 2d, e). Recurrence occurs either when a microbial
community cannot be invaded by any mutant that can be
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Fig. 3 Our model generates multiple evolutionary outcomes and complex networks of mutational paths. Qualitative properties of the dynamics of
adaptation can be visualized and conveyed through graphing the networks of mutational paths. a We hierarchically classify adaptation processes according
to their evolutionary outcome using the number and type of recurrent states. Labels show each outcome’s frequency obtained by sampling of
environmental parameters. b-e The networks of mutational paths from four sets of environmental parameters demonstrate the scope of the model's
dynamic and stationary behavior. The maximum size of mutation (AS,,.,) affects the mutational paths and long-term outcomes of adaptation (compare the
recurrent states between the left and right networks). Circles are transient states; squares are recurrent states; colors denote the number, and type of
metabolic phenotypes in each state following a. Red and blue traces are examples of mutational paths, which start from an ancestral initial state (always a
monomorphic state) and end at a recurrent state. We indicate the phenotype values of residents in some vertices to aid interpretation. b The invasibility
relationship between a pair of phenotypes may reverse in the presence of co-residents as a consequence of frequency-dependent modification of the
environment. For example, an s = = 0.8 metabolic generalist can invade an s =1.0 specialist but the converse is not possible in pairwise competition. When
an s = 0.6 generalist is a co-resident, however, the s =1.0 specialist can invade the dimorphic community of s =0.8 and s = 0.6 generalists——and drive s
= 0.8 to extinction. € A process with multiple, non-connected recurrent states has more than one evolutionarily stable state, each of which is reached with
some probability. d A process where multiple recurrent states are connected exhibits quasi-periodic evolutionary cycling. @ An example of a potentially
bottle-necked process. The network consists of two highly-connected (top and bottom) subgraphs, which are themselves connected via only a few mutation
and invasion transitions

28) ranging from a pure v-specialist to a pure u-specialist:
s € {0.0, 0.1,..., 0.9, 1.0}. We parsed each invasion map with
distributions of mutations that are uniform but with an increasing
size of maximum mutation, AS,,, € {0.1, 0.2,..., 0.9, 1.0}, to

generate 10 adaptation processes. We then analyzed the 100,000

generated from that community (an evolutionarily stable state
or if there is a sequence of mutation and invasion events that
returns to the community.

Hierarchy of evolutionary outcomes. To investigate the effect of
environmental and mutational parameters on the adaptation
process, we randomly sampled 10,000 sets of our model’s nine
environmental parameters. For each set of parameters, we cal-
culated the invasion map using 11 discrete phenotypic values

NATURE COMMUNICATIONS | 8: 68

resulting adaptation processes to determine their long-term
evolutionary behavior.

We classify the evolutionary outcome of an adaptation process
by the number and type of its recurrent states (Fig. 3a). At a high
level, we differentiate between processes with either a single
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Fig. 4 A complex association exists between the environment and the evolutionary outcomes. Overlapping clusters of evolutionary outcomes in
environmental parameter space make prediction difficult and explain sensitivity of microbial communities to environmental change. a Some evolutionary
outcomes are more likely to be associated with certain parameter values, but without a simple dependence. Using a nearest-neighbors algorithm, we
empirically estimated the density of each outcome from sampling parameters. For all combinations of parameters except the dilution rate, we show
densities at absolute values because of the symmetry about zero. Colors for the outcomes follow Fig. 3a. b Evolutionary outcomes form clusters in the
space of parameters but these clusters are not distinct. We used Euclidean distance in a standardized space of parameters to perform within-outcome
hierarchical clustering and then aligned clusters with samples from other outcomes to assess their overlap. We only plot a representative sample (1%) of
the data set, which preserves the observed frequencies of each outcome. Distinct clusters would appear as bright regions in the diagonal combined with
dark regions in the off-diagonal rows and columns indicating that samples with the same outcome are closer to each other than they are to samples with
different outcomes. Instead, we found that clusters for one outcome are almost always proximal to samples from other outcomes (bright off-diagonal
regions). ¢ Environmental perturbations often cause community collapse and only rarely create diverse communities. We calculated the distance in the
standardized space of parameters from each process to the closest process in all other outcome classes and so formed distributions of shortest distances.
The left column shows per panel the shortest distances from the monomorphic specialists to themselves and to one other outcome. The monomorphic
specialists are generally closer to other monomorphic specialists than they are to other outcomes. The right column shows per panel the shortest distances
from one other outcome to itself and to the monomorphic specialists

recurrent state or multiple recurrent states. We further classify —probability. In these adaptation processes we expect

phenotypes as either specialists (when s=0, a v-specialist,
or s=1, a u-specialist) or generalists (when 0<s<1) and
determine whether recurrent communities are either all specia-
lists, all generalists, or a mixture of both. We observed two
qualitatively different behaviors in processes with multiple
recurrent states, which we named ‘multi-stationary” and ‘cycling’.

Multi-stationary outcomes have more than one exclusive
recurrent states and each recurrent state is reached with some

NATURE COMMUNICATIONS |

experimental replicates to eventually show divergent phenotypic
variability® 1% 33, We found that the number of recurrent
states and their stationary probability can depend on the
maximum size of mutation (Fig. 3b, c¢). Alternative microbial
community states have been detected in the human gastro-
intestinal tract®®, although whether these states are caused by
variations in the host environment or are true alternative states is
unclear.
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Cycling outcomes are processes where no microbial commu-
nity is completely resistant to invasion, and the adaptation
process continually cycles between a set of states through
mutation and invasion events. This cycling can be either periodic
(Fig. 3d, left) or aperiodic and unpredictable—albeit confined to a
closed class of recurrent states (Fig. 3d, right). These changes in
the community occur at the evolutionary time-scale’® and,
though reminiscent of, should be distinguished from quasi-
periodic and chaotic dynamics on ecological time scales*, which
are not driven by mutations. For example, in a dimorphic
community of specialists and generalists, mutation and invasion
events can drive the generalists to extinction. This extinction
leaves an unexploited metabolic niche that a newly-emergent
population of generalists can fill, and the cycle repeats (Fig. 3d).
Both of these evolutionary outcomes are qualitatively reproduced
in stochastic simulations with continuous phenotypes (Supple-
mentary Figs. 3-5).

Visualizing adaptation processes as directed networks not only
conveys information about the evolutionary outcomes but also
about the dynamics of adaptation. For example, we found that
some adaptation processes are bottle-necked: most mutational
paths have to transition through a few common states before
reaching a recurrent state (Fig. 3e). The network examples we
show in Fig. 3 are only representative, and do not portray the
entire scope of networks we have observed, but instead illustrate a
few properties of adaptation that can be conveyed graphically. We
will later quantify such properties of the networks to more
comprehensively characterize the dynamics of adaptation and to
construct a predictive model.

Sensitivity of adaptation to environmental conditions. In light
of the multiplicity and complexity of evolutionary outcomes, we
investigated how particular outcomes are associated with the
environmental parameters of the model. These parameters
describe the chemostat’s set-up (rate of influx of substrates and
dilution rate) and the properties of the two substrates (maximal
rate of import, metabolic rate, and yield).

Although some evolutionary outcomes were more likely to be
associated with certain types of environments, no clear pattern
emerged (Fig. 4a). In particular, we did not detect regions in the
space of environmental parameters that robustly associated with a
single evolutionary outcome. We first used a nearest-neighbors
algorithm®” to estimate the density of evolutionary outcomes
given one environmental parameter with the others varying (i.e.,
we estimated the probability of each of the eight evolutionary
outcomes given the environmental parameter). In general, these
relationships were not robust, with the exception of high ratios of
the influx rates of the substrates (>4 in log space): no parameter
region associated with an evolutionary outcome with probability
near 1. Instead, we observed that metabolically diverse
(dimorphic) communities are most likely to emerge when the
rates of influx for the two substrates are similar and when the
dilution rate is low. As the disparity in supply of the substrates
increases, we find that communities undergo evolutionary
cycling, perhaps signaling the onset of ecological collapse®®. At
even greater ratios of the substrate’s rates of influx, communities
disappear, leaving a population of a single specialist as the only
evolutionary outcome. We also found that equality of the
substrate’s yields was a necessary condition for the emergence
of multi-stationary evolutionary outcomes, which suggests that
parity between some properties of the substrates, as for the rates
of influx, is important to promote metabolic diversity. However,
increasing the difference between either the two metabolic rates
or the two maximal rates of import did not lead to notable
changes in the probabilities, except for a general trend towards a
loss of diversity.

|8:68

Even by using combinations of environmental parameters to
characterize outcomes, substantial unpredictability remained. We
developed a hierarchical classification, which combines six
statistical estimators to make predictions (Methods section). Its
overall performance (a mean recall of 0.78 over the eight
evolutionary outcomes), however, did not suggest that a reliable
predictive map from environmental parameters to evolutionary
outcomes could easily be formed (Supplementary Fig. 6).

Evolutionary outcomes are interspersed in parameter space.
We can partly understand this unpredictability by considering
how the different evolutionary outcomes are distributed in
parameter space, where distinct clusters do not appear to exist.
For each outcome, we first performed hierarchical clustering
using the pairwise Euclidean distance in a standardized parameter
space (Methods section) and then aligned these clusters with
samples from other outcomes to assess their overlap (Fig. 4b). In
general, while parameter sets that produced the same outcomes
did form clusters (bright diagonal elements), these clusters were
not distinct: a sample or cluster from one outcome is typically
proximal to samples or clusters from other outcomes (bright oft-
diagonal elements). Environmental perturbations are therefore
often likely to cause a qualitative shift in the long-term com-
munity (Supplementary Fig. 7).

In particular, monomorphic specialists permeate parameter
space and are typically close to all other outcomes. By calculating
the distribution of shortest distances from one type of outcome to
either the same outcome or one of the other seven possibles
outcomes, we can estimate the magnitude of the environmental
change required to both maintain the type of outcome and to
alter one outcome to another (Methods section). Assuming that
the probability of environmental perturbation is inversely
proportional to its magnitude, a change in the environment is
approximately as likely to preserve a diverse community as it is to
lead to its collapse to a monomorphic specialist (Fig. 4c, right).
The converse, however, is not true: a population of monomorphic
specialists is far less likely to transition to a diverse community
(Fig. 4c, left). This asymmetry arises from differences in the
cluster shapes in parameter space. As a two-dimensional analogy,
consider a circular cluster of outcome X surrounded by a ring of
outcome Y of equal area. On average, Y points in the ring will be
closer to the X-Y boundary than X points in the circle because of
the larger interior of the circle. Therefore, small perturbations of
X points are less likely than equivalent perturbations of Y points
to cause a crossing of the X-Y boundary.

We conclude that prediction of evolutionary outcomes from
environmental conditions, even in simple chemostats, is likely to
be challenging. Evolutionary outcomes are only the endpoints of
the adaptive process, however, and we next investigate if the
dynamics of these processes (the mutational paths) are char-
acteristic of their endpoints.

Adaptation dynamics on the network of mutational paths. The
mutational paths of the Markov process describe the dynamics of
adaptation, and the processes we construct have tens to millions
of mutational paths despite having only eleven discrete pheno-
types and a maximum of two co-existing populations in each
community.

Measuring evolutionary repeatability. We analyze the dynamics
of adaptation by enumerating a process’s mutational paths and
calculating the probability with which each path may be observed
to construct the distribution of paths (Methods section). In
addition, we calculate several properties of the paths during
enumeration (Fig. 5a). For example, we define and calculate the
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Fig. 5 Different evolutionary outcomes have characteristic adaptation dynamics. Processes with different evolutionary outcomes have characteristic
dynamics of adaptation, which can be quantified and compared through the properties of their mutational paths. a We enumerate mutational paths to
generate the distribution of paths. Paths begin at a monomorphic state (with equal probability) and end at a recurrent state. A path's probability is inversely
proportional to its length. Most mutational paths are of intermediate length, and only a few are either short or long. b The repeatability of the dynamics of
adaptation depends on the long-term evolutionary outcome and does not typically decrease with larger maximum sizes of mutation. The entropy of the
distribution of paths quantifies repeatability, with high entropy implying low repeatability. Points show the mean path entropy; shaded regions are +s.d. ¢
Statistics from the mutational paths vary with both the maximum size of mutation and the evolutionary outcome. We plot the distributions for six
properties of the paths, grouped by the number of recurrent states and the two extremes of the maximum size of mutation. The distributions are multi-
modal, and the peaks correspond to outcomes lower in the classification of Fig. 3a. d Processes with different evolutionary outcomes have characteristic
properties of their mutational paths. Through linear discriminant analysis, we identified combinations of the six statistics in ¢ that separate the adaptation
processes by their evolutionary outcome. A two-dimensional projection of the result is shown with lines and ellipses drawn manually

length of a path as the number of state-to-state transitions in one
realization of the adaptation process (a single run of an evolution
experiment) from an ancestral to a recurrent state.

The degree to which adaptive evolution is repeatable is of long-
standing interest*> 4%, but analyses are typically restricted to
models with static ﬁtness landscapes?!. To quantify the repeat-
ability of adaptation in our model, where fitness landscapes
change dynamically through construction and destruction of
ecological niches, we mathematically define repeatability as the
entropy of the distribution of mutational paths. If replicate
experiments are likely to follow only a few mutational paths, the
entropy is small and repeatability is high; if each replicate
experiment follows a different mutational path, the entropy is
large and repeatability is low.

In our model, the repeatability of the dynamics of adaptation is
associated with the long-term evolutionary outcome of the
adaptation process and varies with the maximum size of mutation
(Fig. 5b). With one exception, path entropy does not decrease
with the maximum size of mutation as more mutational paths
become possible. We find that processes where monomorphic
specialists are evolutionarily stable have the most repeatable
dynamics, and that this repeatability plateaus early as the
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maximum size of mutation increases suggesting that the adapting
system can follow only a few mutational paths even as larger
mutations become available. In contrast, processes with metabo-
lically diverse communities have the least repeatable dynamics.
Notably, dimorphic specialists (and, to a lesser extent, cycling
outcomes) have a path entropy that increases to a maximum at
intermediate maximum sizes of mutation and decreases thereafter
because a few mutational paths with large mutations emerge to
dominate the process (Fig. 5b, blue line). The rate at which path
entropies plateau varies between the different evolutionary
outcomes. A non-increasing path entropy suggests that muta-
tional paths with larger mutations are not realized. Frequency-
dependent fitness effects may limit large mutations, which lead to
phenotypes different from the current resident, because the
corresponding mutants are ill-suited to the current environment
in the chemostat. Smaller mutations, in contrast, are more likely
to gradually alter the environment.

Mutational path properties identify evolutionary outcomes. To
compare the dynamics of adaptation between processes, we
constructed a condensed dynamical profile for each adaptation
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Fig. 6 Predicting long-term outcomes from the topology of the network of mutational paths. We calculated six centrality measures, which characterize
different aspects of the networks' topology, and used these as learning features in a predictive model trained on complete and incomplete networks. a The
state of a network’s completion affects its topology, which is reflected in the statistics of its centralities. As an example, we show a network in various
states of completion and the corresponding progression of four statistics (dark blue shows the mean and light blue shows the s.d. calculated for 100

different networks). b We characterized the statistics of the centralities by how they converge to their value when the network is complete (the feature
error) and by how well they can discriminate between evolutionary outcomes (mutual information). The plots show the mean of the feature error and the
mean of the mutual information between the statistic and the evolutionary outcomes. ¢ Evolutionary outcomes predicted with a classifier trained on the
statistics of the centralities from partial and complete networks. We assessed performance via the unweighted mean of the F1 score taken over the seven
outcomes. The mean test-set performance is reported for 10-fold cross-validation. Top and right line plots show the mean performance, with the s.d.s as
shaded regions, taken over either the state of completion of the network or the maximum size of mutation. The red line is the performance of a naive

classifier, which predicts following the empirical frequencies of the outcomes

process through calculating six properties of its mutational paths.
These properties were: the number of paths, the mean and var-
iance of the length of the geodesic (shortest) paths, the mean and
variance of the length of all paths, and the mean minimum cut
size (the smallest number of edges that must be removed from the

NATURE COMMUNICATIONS | 8:68

graph to disconnect an initial state from a recurrent state and a
measure of the extent of bottle-necks in the process).

We analyzed the six properties of the mutational paths for
processes with different evolutionary outcomes and at different
maximum sizes of mutation (Fig. 5¢). The effect of increasing the
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maximum size of mutation depends on the evolutionary outcome
of the process, but the qualitative trends are consistent.
Specifically, larger mutations decrease both the mean and the
variance of the length of the geodesic path because recurrent
states can be reached via fewer mutation and invasion events of
larger effect. Similarly, larger mutations have a decreasing, albeit
smaller, effect on the mean and variance of the overall lengths of
the paths. Finally, we found that a larger maximum size of
mutation generally leads to processes with fewer bottle-necks
(higher minimum cut size), particularly for processes with a
single recurrent state. Increasing the maximum size of mutation
by increasing the availability of mutations can increase the
number of outgoing edges from vertices in the network.
Mutational paths that pass through such these vertices can often
still reach the recurrent states even as edges are removed from the
network, and so the degree of bottle-necking is reduced.

The distributions of properties of the mutational paths are
multi-modal (Fig. 5¢), and the peaks correspond to evolutionary
outcomes lower in the hierarchy of evolutionary outcomes
(Fig. 3a), suggesting that processes with different outcomes have
characteristic dynamics of adaptation. We used discriminant
analysis to find linear combinations of the six properties of the
paths that maximize the separation of the viable evolutionary
outcomes according to their dynamics. We found that different
outcomes, particularly those higher in the hierarchy of outcomes
(Fig. 3a), occupy different regions in a two-dimensional
projection of the discriminant space (Fig. 5d). We can therefore
conclude that mutational paths characteristically identify long-
term outcomes, and we contrast this positive finding with the
difficulty of obtaining an association between environmental
parameters and evolutionary outcomes (Fig. 4).

The properties of mutational paths that we calculate quantify
statistical aspects of the adaptation process, but enumeration of
paths becomes computationally prohibitive for larger networks
and relies on the correct classification of states, which itself
requires knowledge of the complete network of paths. We next
present an alternative graph-theoretic approach that relaxes these
constraints and forms the basis of a model for predicting
evolutionary outcomes from observations of the dynamics of
adaptation.

Predicting outcomes from networks of mutational paths. To
motivate our predictive model, we consider an evolution experi-
ment as the progressive construction of a network of mutational
paths. In such a setting, the resident microbial populations in a
chemostat are periodically assayed*?, and the transitions between
resident communities are used to progressively construct the
network. To simulate the results of this procedure, we re-sampled
the 100,000 adaptation processes in our data set to obtain net-
works at varying stages of completion. Incomplete networks may
contain spurious recurrent states, which obfuscate the process’s
evolutionary outcome (Fig. 6a, top). These states appear recurrent
because the mutation and invasion events that lead away from
these states have not yet been observed in the experiment. The
objective, then, is to forecast the true recurrent states of the
complete network from an incomplete sample. While a single
adaptive trajectory is unlikely to contain enough information for
reliable prediction, we show how incomplete trajectories from
replicate evolution experiments can be combined and used in a
predictive manner.

Informative and invariant topological properties. Our pre-
dictive model relies on quantifying how networks change with
accumulating observations. As we have shown earlier, evolu-
tionary outcomes have characteristic mutational paths. To use the
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information encoded in the entire network of mutational paths at
once, we measure graph-theoretic properties that quantify
abstract features of the network. Specifically, for each network, we
calculated six measures of centrality*? that characterize different
aspects of the topology of the network: the in-degree, out-degree,
closeness, betweenness, HITS-hub, and HITS-authority cen-
tralities (Methods section, Supplementary Fig. 8, and Supple-
mentary Table 1). Though less interpretable from an ecological or
evolutionary standpoint compared to the properties of the
mutational paths (such as the length of the path), centralities
nevertheless contain valuable predictive information. For each
network we calculate the mean and variance of the six centralities
(taken over the network’s vertices). As mutation and invasion
events are observed, new vertices and edges are added to the
network, and the resulting changes in the network’s topology are
reflected in changes in the statistics of the centralities (Fig. 6a,
bottom).

To quantify how informative is a statistic for a centrality, and
therefore how useful the statistic will be in a predictive model, we
calculated the mutual information between each of the two
statistics for the six centralities and the evolutionary outcomes
(Methods section). A high mutual information suggests that
processes with different evolutionary outcomes have sufficiently
different distributions of centralities to allow us to unambiguously
associate a particular statistic of a centrality with an evolutionary
outcome (Fig. 6b, feature information). By calculating the
difference in the statistics of the centralities between the network
at varying stages of completion and when the network is fully
complete, we found that some statistics will converge quickly: in
the sense that, after a small fraction of the network is discovered,
they will remain invariant as more vertices and edges are added
(Methods section). In other words, these centralities are abstract
topological features of the network whose statistics can be reliably
identified with only a few observations (Fig. 6b, feature error).
Interestingly, we found that the most informative statistics of the
centralities (those with the highest mutual information) were also
the slowest in terms of converging to their value when the
network is complete (Supplementary Fig. 9).

Topology predicts outcomes from incomplete observations.
Differences between the topologies of the networks, even for
incomplete networks, were sufficient to enable reliable prediction
of evolutionary outcomes using a statistical-learning approach.
The twelve statistics (the mean and variance of the six cen-
tralities) provide a projection of the network of mutational paths,
through its topology, to a low-dimensional space. We trained a
classifier to predict evolutionary outcomes from these features of
the centralities using data from incomplete and complete net-
works, the degree of the network’s completion, and the maximum
size of mutation (Methods section). To avoid biasing against rare
outcomes, we used the unweighted mean F1 score (over the
outcomes) as the optimization metric. Neither the degree of the
network’s completion or the maximum size of mutation will
typically be known during an experiment, and we marginalized
over both these variables during testing (Supplementary Fig. 10).
The performance of the classifier improves with increasing
completion of the network and is best at intermediate sizes of
maximum mutation (Fig. 6¢). At 50% completion of the network,
the classifier predicts the correct long-term outcome approxi-
mately 85% of the time (average F1 score >0.7), and at 60%
completion predicts correctly 98% of the time (F1=0.8).

We have shown here that our predictive approach can be useful
in forecasting changes in the community through incomplete
observations of the dynamics of adaptation, including the loss of
(metabolic) diversity. Detecting the onset of transitions in a
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community is an enduring problem, but most approaches focus
on catastrophic transitions’® 4%, Nevertheless, the loss of
biodiversity following environmental disturbance can, as we have
shown, involve a series of ecological transitions mediated by
multiple mutation and invasion events, and our network-based
approach can address this challenge.

With increasing complexity of ecological models, the computa-
tional burden of simulating an exponentially increasing number
of combinations of parameters imposes a limit on our under-
standing of complex and realistic models. When the goal is to
forecast long-term outcomes, however, our predictions suggest
that it is possible to safely forego simulating the entire model once
a sufficient training sample has been obtained. Instead, only a
fraction of the mutational path network is necessary to reliably
predict the long-term community outcome.

Discussion

We have shown that a simple model of microbial metabolic
adaptation, comprising a trade-off in the use of one substrate over
another, can generate surprisingly rich eco-evolutionary behavior.
In part this complexity arises because the capacity of an organism
to grow depends on the frequency and type of co-existing
organisms. In our model, this dependency arises through the
creation and destruction of metabolic niches by the differential
depletion of substrates by different phenotypes, which has been
observed in both experimental evolution® '® and the gastro-
intestinal tract>. Pairwise analysis of microbial interactions may
then be insufficient to understand complex communities, and
even misleading, because a phenotype’s ability to invade depends
on the presence of co-residents.

Many of the evolutionary outcomes we see have real-word
analogs. For example, the ‘mixed’ strategy of a single metabolic
generahst is consistent with results for yeasts growing on two
sugars'?. Although outcomes of single metabolic generalists were
rare in our model, metabolic generalists were more common than
specialists in dimorphic communities, being stabilized by the
presence of a second population of either generalists or specialists
through environmental modification!®. The multi-stable evolu-
tionary outcomes that we observe have been investigated in
multiple ecosystems?®, and alternative microbial communities in
the gastrointestinal tract are linked to disease’. Although
microbial populations that cycle on ecological timescales have
been reproduced in the laboratory®®, our cycling evolutionary
outcomes are driven by mutations rather than ecological inter-
actions, similar to evolutionary chaos*®

Experiments in the laboratory reveal that replicate evolvin gg
populations have both parallel and unique adaptive changes!” !
and we address the repeatability of evolution by calculating the
entropy of the distribution of mutational paths. In our model, the
probability that two experimental replicates will result in the same
sequence of mutations partly depends on the long-term evolu-
tionary outcome. We therefore predict that the repeatability of
adaptation can be controlled by choosing environmental condi-
tions. For example, a chemostat with a high ratio for the influx
rates for the two substrates is more likely to generate mono-
morphic specialists, which have the lowest path entropy, and
therefore will have lower variability between replicates than a
chemostat with a low ratio of the influx rates.

The behaviors we observe are sufficiently complex to preclude
reliable prediction of evolutionary outcomes from environmental
conditions, even qualitatively. Such prediction is therefore likely
to be sensitive to the accuracy of experimental measurements. A
further corollary is that an environmental perturbation is more
likely to lead to the collapse of a microbial community than the
emergence of a more diverse community. Unlike catastrophic
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transitions®® 44, this loss of biodiversity can involve multiple
mutation-and-invasion events, which may mask the long-term
impact of an environmental change.

Nevertheless, we demonstrate that both statistical properties of
mutational paths and topological properties of networks of these
paths allow the characterization of evolutionary outcomes. We
therefore highlight the dynamics of adaptation as a key variable
for prediction and emphasize that this association could also
work in reverse: it may be possible to infer the properties of
mutational paths by observing the outcome of an adaptive pro-
cess. Our predictive model relies on the topological properties of
the networks of mutational paths, which we summarize through
the statistics of centralities of the networks. These statistics
therefore have a predictive utlhty 51m11ar to structural indicators
in evolutionary game theory*> °* and statistical indicators in
ecological early-warning systems38 4,

The analysis of networks is 1ncreasingly being adopted in
ecology and evolution. In microbial ecology, data for the abun-
dance of species is used to reconstruct the network of microbial
interactions in a community”'; in evolutionary game theory, the
effect of a population’s structure on the spread of mutations is
studied on networks of connected individuals®. Our approach is
complementary but different, connecting states of communities
rather than of species or individuals, and facilitates the visuali-
zation of adaptation on dynamic fitness landscapes, as well as the
application of techniques from graph theory and machine
learning to the analysis and prediction of adaptation.

Our modeling approach combines elements from the
replicator-mutator equation®> >* and adaptive dynamics!'® 12 32
to couple ecological dynamics to an evolutionarily process. Unlike
replicator-mutator models, we consider only rare mutations,
where a less fit phenotype cannot be maintained through a
constant contrlbutlon of mutating individuals from a more fit
phenotype>>. We follow adaptive dynamics in treating ecological
invasion after mutation as the fundamental unit of adaptation.
Nevertheless, mutations in our model are not infinitesimally small
and adaptive trajectories need not be continuous in phenotype
space. We show that the theory of stochastic (Markov) processes
is a suitable framework for analyzing both the adaptation
dynamics and long-term evolutionary outcomes, and the invasion
maps we produce can be thought of as hlgher dimensional ana-
logs of the standard pairwise invasibility plots'?.

Although we capture many eco-evolutionary phenomena, our
models simplify several aspects of the evolution and function of
communities. The separation of ecological and evolutionary
timescales should be relaxed to allow multiple, simultaneously
invading mutants®® and mutant populations with multiple co-
occurring mutatlons57 %8, Both effects are often pervasive in
microbial evolution®®. We only consider exploitative competition
between members of a microbial community, but other 1nterac-
tions are possible, such as cross-feeding and commensalism®!
Potential phenotypic changes are constramed by the types of
genetic mutations that are possible®’, and we have modeled such
constraints coarsely. More sophlsncated models, going beyond
the uniform distribution within a maximum size of mutation that
we consider, should change both the properties of the mutational
paths and their networks and, potentially, the nature of the
possible long-term evolutionary outcomes. Finally, our phe-
nomenological treatment of metabolic specialization could be
replaced with a data-informed genotype-phenotype map; for
example, flux balance analysis can prechct a microbe’s metabolic
phenotype from its metabolic genotype®!.

Advances in laboratory evolution make microbes well-suited
for validating our predictions. A library of mutants for either a
particular gene or tralt of interest could be generated through
random mutagenesis®”. To determine the outcome of all possible
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invasions, perhaps following a dynamic algorithm to direct and
reduce the number of necessary experiments (Fig. 2), the mutants
could be co-cultured and the results combined to construct
empirical networks of steady-state microbial communities. Such
networks could be directly compared to those generated in silico.

In conclusion, we present a model that demonstrates the
importance of trade-offs for generating metabolic complexity in
microbial communities’ . If a cell is able to evolve its response to
one substrate unconstrained by its response to the other, then
only one evolutionary outcome is possible: a phenotype that
maximally depletes both substrates. Metabolic trade-offs, how-
ever, preclude this single optimal ghenotype and together with
dynamic environmental niches> ® 18 and a limited distribution of
(possibly large effect) mutations®® generate intricate dynamics of
adaptation and long-term behaviors. Intracellular trade-offs are
expected to be common?® ¢4 %% and our results support the idea
that the resulting frustration of optimal responses is a major
factor generating the complexity observed in microbial
communities.

Methods

Modeling the chemostat with two substitutable substrates. The model of the
chemostat is the ecological component of our eco-evolutionary framework.
Assuming rare mutations, we consider the model’s ecology in the absence of
evolutionary change and only later incorporate an evolutionary process. The
environment in the well-mixed chemostat is spatially homogeneous, and the
abundance of the biotic components is modeled over time using ordinary differ-
ential equations®!. We include a second substrate that is perfectly substitutable with
regards to the first> 22 either substrate is sufficient for growth. We name the
substrates « and v.

To include growth, we structure microbial populations into N; states of growth
that a cell must pass through to replicate. A cell can exist in any one of the possible
growth states and in all of these states can bind either a u or a v substrate, but not
both simultaneously. Let ny(t) = (n1x(t), n2.x(t), ... , 7, x(t)) be the abundance
of cells with phenotype x in each growth state and n,(‘u)(t) and n)((v)(t) be the
corresponding vectors for when a cell is bound by and is metabolizing u and v. The
system of ordinary differential equations describing the ecological dynamics can
then be written in matrix notation as

n,(t) = —ny[uk,s; + vk, (1 — s;) + D]
+m, 1] 0l 4 m, 1] 0"
h)((“)(t) — n,uky,s, — n® (my, + D)
ﬁ,((v)(t) =nuvk, (1 —sy) — n,((v)(mv + D) (1)

u(t) = u® —u [D +kiy lTnxsx}

() = v — V[D+ ky zxj 1"n, (1 - sx)]

where: k, and k, are the maximal rates of import for u and v; m, and m, are the
substrate-specific metabolic rates; u(®) and (%) are the influx concentrations for the
two substrates; and D is the chemostat’s dilution rate. The metabolic specialization
of phenotype x is parametrized by s,, a value between 0 and 1.

Progression through the growth states is encoded in the T™) and I'") matrices
and depends on the yields of each substrate, y, and y,, which are measured in
increments to the growth state. Transitions from a state p to a state g are
proportional to:

I“i(,"q) = piy,q + Opry,—Nog + 510 +7, — Ni)

T = Opirea + Opir, g + 810(p+7, — No)

where &, is the Kronecker delta and 6(z) is the Heaviside function. In both
equations, the first term describes a cell transitioning directly from state p to state g
through metabolizing a u or a v substrate. The second and third term are non-zero
when a cell metabolizes enough substrate to divide (increment its growth state past
N,): the second term is the leftover ‘mass’ in the mother cell that determines its new
growth state following replication, and the third term describes the birth of a new
daughter cell (and therefore can only be non-zero for g =1).
We note that if the size (the number of phenotypic values) of the space of

discrete phenotypes is N, then the model has N, equations for each of n,, n;", and
n, following Eq. (1). We have chosen N, =11 throughout.
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Simulating invasion by a mutant phenotype. To resolve the outcome of invasion
and competition between any combination of residents and a mutant, we
numerically integrated the model (Eq. (1)) for all phenotypes to steady-state after
including a small mutant population.

Let N; denote the steady-state abundance of the microbial population with
phenotypic value s,, i.e.,

=z

{n,v_x + n,(-_';) + an . (3)

1

N =

We consider vectors over all N, phenotypic values (over all discrete values of s,),
and at most two elements of these vectors are non-zero at steady-state because at
most two phenotypes can co-exist at steady-state because we have two substrates. If
the steady-state before invasion by a mutant is

(Ng.Nf,...,N,*Vp,u*,v*)7 (4)

then when a nascent mutant with phenotype, y, emerges, we perturb this steady-
state to include a small population of mutants with abundance €. The magnitude of
€ is determined by multiplying the steady-state abundance of the smallest, positive
resident by a constant factor, 8. If the chemostat contains no resident, we set € to 8.

The model, Eq. (1), is numerically integrated to steady-state using the initial
condition

(NG oo Ny s Ny '), (5)

and this steady-state will be different from the original steady-state if the invasion
is successful. Numerically, we define a steady-state to be when the relative

magnitude of all derivatives is smaller than a threshold: ’2:—’:)<10’3.

We use the composition of extant phenotypes to distinguish the different
steady-states of the ecological model. In our model, like others®®, there is one
unique, globally attracting steady-state®’. For simplicity, we represent the
composition of extant Ehenotypes (indexed by x) in a steady-state k by a binary
vector of length N, C®), where Gy’ =1if N;>e and C;”’ = 0 otherwise. Here ¢
has the same magnitude as the € used for the initial size of the populations of
mutants. This choice means that neutral mutations, which neither grow or decline
when they first emerge in some resident community, will not be preserved in our
chemostat; therefore, our model of adaptive evolution does not include neutral
evolution.

Eco-evolutionary model in the weak-mutation limit. We calculate solutions to all
possible invasions that can arise in the eco-evolutionary setting using dynamic
programming and the results are stored in an invasion map (Fig. 2a and Supple-
mentary Note 3).

We next construct the discrete-time, embedded Markov chain in the limit
where the ecological and evolutionary timescales are perfectly separated (followin_g
adaptive dynamics'> 1% 32), Assuming that the process has phenotypic vector c®,
then the probability of a transition to state C¥) from a single mutation and invasion
event in a small unit of evolutionary time, At, is

z (‘N(x|C(i))b(x\C(i>)y(x\C(i))My‘xI(y\CU>,C(i))At (6)
xeC ygcl)

pji(At) =

for j #i. In Eq. (6), N(ICY) is the abundance of the phenotypes in the population
indexed by x at steady-state i; b(xIC?) is the per capita birth rate of population x at
steady-state 7, which in the chemostat is always equal to the dilution rate;
u(xICD) = y is the mutation probability per birth, which we assume is constant; M,
« is the probability that a mutant offspring of a cell with phenotype s, will instead
have phenotype s,. We call M the phenotype adjacency matrix, which here is
symmetric and uniform and defined by the maximum size of mutation size, AS,ax
€ (0, 1]. We first write M),‘x = 1 if Is, = sl < ASpay, and My‘x = 0 otherwise, and
then row-normali;e to include boundary effects so that My, = Mﬂx / ZIZV" Mz‘x.
Finally, I)1C%, C?) is the probability that a rare s, phenotype invading a resident
of phenotypic composition C® will transform the composition to C% and is either
0 or 1 because our ecological models are deterministic (Eq. (1)). Nevertheless,
stochastic extinction because of a small initial number of mutants can be
incorporated into this term.

We need only consider transition probabilities at ecological steady-states. When
mutations are rare, the chemostat will be at steady-state when a new invasion and
mutation event occurs and transition probabilities will evaluate to zero in the limit
At — 0 otherwise. Adaptation in the weak-mutation limit can be modeled as a
‘jump’ process, where time is interpreted in terms of successful mutation and
invasion events, or jumps.
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To calculate the transition probabilities, we first form the infinitesimal generator
matrix, Q, by calculating the transition rates, gj;:
pii(At)

. t AP
aji = fim Ty fori# with qu:*;qﬂf ?)

From Eq. (7), we can find the transition probabilities, Ljtis for the discrete-time
(embedded) Markov process. If g;; =0 then gj; is zero for all j from Eq. (7), and
there is no flow of probability from state i. Hence

tii=1 and tj; =0 forg; = 0. (8)

If ga; # 0, then there is flow of probability away from state i and

ti =0 and i = qj\i/ qu\i forqi‘i # 0. (9)
k#i

Finally, we assume that the probability distribution for the initial state is uniform
over all monomorphic states providing that those monomorphic states can exist in
the chemostat without competition.

Predicting outcomes from environmental parameters. We used a hierarchical
scheme to classify each process of adaptation by its qualitative evolutionary out-
come (Supplementary Fig. 6). Our best attempt at predictive required training a
hierarchy of (mostly) binary classifiers. This model follows the hierarchical scheme
of evolutionary outcomes in Fig. 3a: for each of the six non-leaf (non-terminal)
nodes we optimized, trained, and tested either a support vector machine classifier
with a kernel of radial basis functions or a random forest classifier. The best-
performing classifier at each node was included in the final model, which makes
predictions by percolating a sample down the hierarchy until it encounters a leaf
node. For the ternary node (from ‘dimorphic state’ to ‘specialists’ or ‘hybrid’ or
‘generalists’), we optimize three one-vs.-one random forest sub-classifiers. Classi-
fication in the ternary setting is achieved via majority voting®’.

To optimize node classifiers, we used a random search of hyperparameters.
Hyperparameters were randomly sampled from specified distributions, and the
classifier was trained and tested on a nested (stratified) partitioning of the training
set in a 5-fold manner to obtain a mean score of optimization. The classifier’s
performance during optimization was calculated from the area under the receiver
operating characteristic curve’’. The estimator with the highest scoring set of
hyperparameters was chosen, re-trained on the entire training set, and was
subsequently tested against the original test set. This process was repeated 10 times
to obtain the mean test score for the node classifier (Supplementary Fig. 6).

Outcome clusters and shortest-distance distributions. We calculated the
pairwise Euclidean distances between all standardized parameter sets. After log-
transforming the rate of influx of the substrates, the maximal rates of import, the
metabolic rates, and the chemostat’s dilution rate, we standardized the environ-
mental parameters to have zero mean and unit variance to normalize for differ-
ences in scale.

To discover within-outcome groupings, we hierarchically clustered samples
with the same evolutionary outcome using the Euclidean distance and Ward’s
method for joining clusters. To assess the degree of overlap between clusters with
different outcomes, we used the within-class indexing returned by the clustering
algorithm to re-sort the rows and columns of the pairwise distance matrix. Not
only does this re-sorting move together samples with the same evolutionary
outcomes that are close in parameter space (as bright boxes along the diagonal in
Fig. 4b), but also reveals how dissimilar these clusters are with respect to clusters of
other evolutionary outcomes (off-diagonal blocks Fig. 4b).

To calculate the distribution of shortest distances between evolutionary
outcomes (Fig. 4c), we standardized the parameter space as before and used the
Euclidean distance to determine each sample’s nearest neighbor for each of the
eight evolutionary outcomes.

Mutational path distribution and path properties. We search a network to find
all paths, p, between an (ancestral) state and the set of recurrent states for that
network. To avoid infinite paths in the case of cycling processes, we terminate the
relevant branch of the algorithm when any recurrent state is encountered. We keep
a list of probabilities for the state-to-state transitions in each path. The number of
transitions in a path, p, is its length, L,, and the probability of the path is

By = Pancestral (i0) {fmfﬂ Bliy o iy i, (10)
where P, cestrai(io) is the probability that adaptation starts at state Clo) and tirliy 18
the transition probability from state C®) to state C?), and so on. Note that the hy
define a probability mass function, i.e., ZpeP hy =1, where P is the set of all
unique paths, because the process must start at one of the initial ancestral states
and be absorbed in a recurrent state. We define the geodesic paths, G, as those
paths, g, with initial state C%¢7, and final (recurrent) state C¢”) whose length is the
minimum possible for a path between C&) and C&¥”).
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Summary statistics (mean and variance) for the properties of the paths are
calculated using either the distributions of paths (h,) or of geodesic paths (h,),
where we normalize to find the probabilities conditioned on the geodesic set: i.e.,

hg = hg/(deg hé)'

Centrality convergence (error) for incomplete networks. To characterize how a
statistic of a centrality converges to its value when the network is complete as a
function of the degree of a network’s completion, we used a scale-free measure of
error. Let x(c, ASy,y) be the value of the statistic for networks at completion ¢
(fraction of edges of the complete network included in the incomplete network)
and maximum size of mutation AS,,,,. Then let

x(¢, ASmax) — c_sgxlg;lles{x(a' ASmax) }

max {x(c, ASmax)} —

c,samples

y(c, ASmax) = (11)

min {x(c, ASmax)}

c,samples

be the normalized value of x(c, AS,,,,). The minimum and maximum are taken
over all values of completion, ¢, and over all samples and so establish the observed
range of values of the statistic. This normalization ensures that y(c, ASy.) € [0, 1]
for all samples. We defined the normalized error for this sample process as

e(¢, ASmax) = [y(c, ASmax) — ¥(1, ASmax)| (12)
where y(1, AS;,.x) is the normalized value of the statistic when the entire graph is
discovered (i.e., when graph completion is 1 and all edges are known). We define
the feature convergence error as the mean of e(c, ASy,,x) taken over all samples in
the data set of partial graphs. We repeat this procedure for all twelve centrality
statistics (Supplementary Fig. 9).

Mutual information between centralities and outcomes. To characterize how
well a feature discriminates between processes with different ultimate evolutionary
outcomes, we estimated the mutual information between the feature and the
ultimate evolutionary outcome. We are interested in this ultimate evolutionary
outcome because the evolutionary outcome of a process’s incomplete networks may
be different from the true outcome when the network is complete. We grouped
statistics by the degree of completion of the networks and by maximum size of
mutation to assess whether some centralities are more or less informative.
Accordingly, the mutual information, I(X, Y; ¢, ASiay), between each of the twelve
statistics, X, and the ultimate evolutionary outcome, Y, was calculated as

I(X,Y;¢, ASmax) = H(X(c, ASmax)) — (HX (¢, ASmax)| Y (¢, ASmax)) (13)
where X(¢, ASpay) is the distribution of the statistic of the centrality and

Y(c, ASmax) is the distribution of the ultimate evolutionary outcomes, constructed
from samples of complete and incomplete networks that have been grouped by the
degree of completion of the network (c) and the maximum size of mutation
(ASmax). Note that, because we work with the ultimate evolutionary outcome of an
incomplete network: Y(c, ASpax) = Y(1, ASp.y) for all c. We used a nearest-
neighbors procedure to estimate the density®® to calculate both H(X(c, ASpay)) and
H(X(c, ASmax)!Y(c, ASmax)). We reported the normalized variant of mutual
information, which has a maximum value of 1 when the evolutionary outcome can
be perfectly predicted from the value of the centrality’s statistic: I(X, Y; ¢, ASpa)/H
(Y(c; ASmax)-

Predicting evolutionary outcomes from incomplete networks. To predict evo-
lutionary outcomes from samples of incomplete networks, we trained a machine-
learning model on the networks’ topological properties. Centralities characterize
aspects of networks” topologies*>, and we focused on six well-known centralities:
in-degree, out-degree, closeness, betweenness, HITS-hub, and HITS-authority
(Supplementary Fig. 8). Centralities are calculated on a per-vertex basis, and we
summarized the distribution of each centrality for each network by its mean and
variance.

We used the resulting twelve statistics, as well as the maximum size of mutation
and the degree of completion of the network, as features in a random forest
classifier. The model was evaluated in 10-fold cross-validation using the
unweighted F1 score mean (over the evolutionary outcomes) as the performance
metric to reduce bias against rare evolutionary outcomes. We used a random
search to optimize the hyperparameters of the classifier in a nested manner. The
training and testing procedure is summarized below:

1.  Partition the entire data set of complete and incomplete networks into
10 stratified folds, where each fold contains roughly similar fractions of
each class of outcomes. In addition, we partitioned the data such that the
training and testing networks did not overlap, even at different degrees of
completion of the networks: we did not train on a complete network and
then test the model on an incomplete sample of the same network.

2. For each of the 10 outer folds (above), we further partition the training
data to 10 stratified inner folds, following the same rules as before.

3. We then randomly select a set of hyperparameters for the classifier and
evaluate its performance by training and testing on the inner folds. We
randomly choose 10° incomplete networks for training each time because
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even the innermost training set was too large to fit in memory (~5.7 x 107
networks). We repeat this nested cross-validation method to identify
suitable hyperparameters.

4. The optimal set of hyperparameters (from inner cross-validation) is then
used to train the classifier on the training data from the outer fold.

5. The trained model is then tested on the test data from the outer fold.

6.  Steps 2-5 are repeated on the next outer fold.

To closely assess the performance of the classifier, we report the performance on
the outermost test set averaged over the 10 outermost folds and grouped by the
degree of completion of the networks and the maximum size of mutation.

Although training and optimization was done using the 12 statistics, the degree
of completion of the networks, and the maximum size of mutation, we reasoned
that the degree of completion of the networks and the maximum size of mutation
will usually be unknown. To predict evolutionary outcomes without knowing these
two quantities, we repeated the above procedure, but now marginalized over both
quantities using a uniform prior and using the outcome with the highest marginal
probability as the classifier’s output (Supplementary Fig. 10).

Code availability. The computer code used to generate and analyze the data in this
study is available from the corresponding author upon request.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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