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Although cells respond specifically to environments, how envi-
ronmental identity is encoded intracellularly is not understood.
Here, we study this organization of information in budding yeast
by estimating the mutual information between environmental
transitions and the dynamics of nuclear translocation for 10 tran-
scription factors. Our method of estimation is general, scalable,
and based on decoding from single cells. The dynamics of the tran-
scription factors are necessary to encode the highest amounts of
extracellular information, and we show that information is trans-
duced through two channels: Generalists (Msn2/4, Tod6 and Dot6,
Maf1, and Sfp1) can encode the nature of multiple stresses, but
only if stress is high; specialists (Hog1, Yap1, and Mig1/2) encode
one particular stress, but do so more quickly and for a wider range
of magnitudes. In particular, Dot6 encodes almost as much infor-
mation as Msn2, the master regulator of the environmental stress
response. Each transcription factor reports differently, and it is
only their collective behavior that distinguishes between multiple
environmental states. Changes in the dynamics of the localiza-
tion of transcription factors thus constitute a precise, distributed
internal representation of extracellular change. We predict that
such multidimensional representations are common in cellular
decision-making.

cell signaling | mutual information | time series
transcription factors | stress

1l organisms sense their environment and internally repre-

sent the information gained to elicit a change in behavior
(1). Much is understood about such representations in neural
systems (2), but single cells must perform an analogous task (1,
3), encoding intracellularly the information about extracellular
environments, and yet little is known about the nature of their
encoding.

The activation of transcription factors is thought to provide
an internal representation of a cell’s environment (4-10), but
how information is encoded dynamically, whether information
is spread across multiple factors, and how information is read
downstream all remain unclear (Fig. 14). We do know that the
biochemical implementation of such representations is likely to
be stochastic (11) and that the same biochemistry may be used to
sense disparate environments. Furthermore, cells typically have
just “one shot” at mounting the appropriate response from these
internal representations, with competition being unforgiving for
those that delay, at least among microbes (12-14). Here, we use
information theory to investigate how eukaryotic cells answer
these challenges.

To do so, we turn to budding yeast and to environmen-
tal changes for which we expect information encoding to be
key: stresses that compromise growth and evoke adaptive gene
expression (15). In yeast, extracellular changes are sensed by sig-
naling networks that regulate the activity of transcription factors,
often by their translocation either into or out of the nucleus (16),
analogous to p53 and NF-<B in mammalian cells (17, 18). We
therefore consider the movement of these transcription factors
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as a cell’s internal representation of an environmental transition.
The translocations are dynamic and stochastic, and the informa-
tion available from the full time series of the response could
be substantially higher than that available from any temporal
snapshot (9) (Fig. 14).

Tens of transcription factors translocate in yeast (16), and we
focus on a representative subset: Msn2 and its paralog Msn4,
which drive the environmental stress response; Migl and its
paralog Mig2, which respond to low glucose; Hogl (a kinase),
which responds to hyperosmotic stress; Yap1, which responds to
oxidative stress; Sfpl, which promotes, and Dot6 and its para-
log Tod6, which repress the biogenesis of ribosomes; and Mafl,
which represses the synthesis of tRNAs. We include Dot6 and
Tod6, which are little studied, to determine if our approach can
help determine their physiological importance. Some of these
factors (Msn2/4, Migl/2, and Dot6/Tod6) have pulsatile dynam-
ics, with stochastic bursts of nuclear localization even without
stress (19).

We consider environmental shifts from rich medium (2%
glucose) into carbon stress (0.1% glucose), hyperosmotic, or
oxidative stress. Using fluorescent tagging and microfluidics (20),
we measure the degree of nuclear localization of the transcrip-
tion factors in hundreds of single cells both before and after the
stress is applied (Fig. 1B).

Significance

To thrive in diverse environments, cells must represent extra-
cellular change intracellularly despite stochastic biochemistry.
Here, we introduce a quantitative framework for investigat-
ing the organization of information within a cell. Combin-
ing single-cell measurements of intracellular dynamics with
a scalable methodology for estimating mutual information
between time series and a discrete input, we demonstrate that
extracellular information is encoded in the dynamics of the
nuclear localization of transcription factors and that informa-
tion is lost with alternative static statistics. Any one transcrip-
tion factor is usually insufficient, but the collective dynamics
of multiple transcription factors can represent complex extra-
cellular change. We therefore show that a cell’s internal rep-
resentation of its environment can be both distributed across
diverse proteins and dynamically encoded.
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Fig. 1. Intracellular responses carry information on extracellular change.
(A) Environmental transitions trigger dynamic intracellular responses (pur-
ple and blue time series), which may be the only indications to the cell that
the environment has altered. Stochasticity can make intracellular responses
a poor readout of the new environment, and a probabilistic representation
of the possible environmental state based on the instantaneous intracellu-
lar response may vary over time. (B) Our approach compares single-cell time
series of nuclear translocation (Sfp1is shown) in different environments. The
transcription factors are tagged with green fluorescent protein to reveal
their dynamics (Insets and SI Appendix, Fig. S2). (C) We estimate the mutual
information (MI) between the time series and the environment by using
70% of the data to train a classifier to classify the time series into the two
environments (each colored line in the heat map is a single cell, with greater
nuclear localization indicated by yellow and less by blue). With the remain-
ing data, we determine the confusion matrix (the probability of correctly
and incorrectly identifying the environment from a time series) and, from
this matrix, a lower bound on the mutual information. (D) By increasing
the length of the time series used by the classifier (each time series has the
same initial point), we estimate both the probability of correct and incor-
rect predictions and the mutual information as a function of the duration
of the response. Here, the actual environment is 0.1% glucose (green area
indicates the fraction of correctly classified time series). At t =0, the two
environments cannot be distinguished, and the best prediction is a random
guess, which has a prediction probability of 0.5, corresponding to 0 bits of
information. Error bars are SD across biological replicates (n = 6).

Results

To quantify the information available to the cell, we develop a
general and scalable methodology to estimate the mutual infor-
mation between the time series of cellular responses and the
state of the extracellular environment (Fig. 1C and SI Appendix,
Figs. S4-S7). Mutual information, a measure of statistical depen-
dency (21), allows us both to capture the effects of biochemi-
cal stochasticity, which can drive individual responses far from
the average, and to avoid a priori assumptions about which
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features of the response are relevant, such as its magnitude or
duration.

Our method involves training a classifier to predict the state
of the environment from the time series of as few as 100 cells.
The classifier’s output on the test data can then be used to esti-
mate the mutual information (Fig. 1C). Formally, this approach
provides a lower bound on the true information (SI Appendix),
but, biologically, we are quantifying the information that a cell
could plausibly recover and act upon after observing a sin-
gle time series of its response. By varying the duration of the
time series used by the classifier, we can determine how quickly
cells accumulate information (Fig. 1D). In addition, errors made
by the classifier indicate environments that are likely to be
confused, giving insight into tasks potentially challenging for
the cell. Although the final estimate of mutual information is
determined by the signal-to-noise ratio of the data, this noise
may not be all biological, again making our estimates a lower
bound.

Mutual information is also determined by the choice of input
distribution. Our focus is to use mutual information to quan-
tify the signal-to-noise ratios in the single-cell time series, and
therefore we choose a uniform distribution, which does not favor
any one input. When we repeat the estimations using the input
distribution that maximizes the mutual information, we see few
changes (SI Appendix, Fig. S18). Indeed, in the true (natural)
input distribution, stresses may not even occur one at a time as
we have assumed.

Detecting Environmental Change. Considering transitions into one
of three environments, all of which reduce growth (Fig. 24), the
10 transcription factors have diverse dynamics (Fig. 2B). The
mutual information we calculate addresses whether an environ-
mental transition can be detected from a typical time series of
nuclear localization and is a number between 0 bits (indicat-
ing no detectable statistical differences between the dynamics
of localization before and after the transition) and 1 bit (the
dynamics of localization before and after the transition are
distinct).

The glucose specialists Migl/2 perform almost optimally in
carbon stress with almost the maximum possible information of
1 bit (Fig. 2C). We note that different transcription factors
encode information in different ways. For example, Dot6 and
Sfpl have dissimilar dynamics (Fig. 2B), yet encode the same
amount of bits (Fig. 2C). Paralogs, however, do not necessarily
carry equal information (compare Tod6 and Dot6).

Information can be encoded within minutes of the environ-
mental transition with no trade-off: The speed of encoding
typically increases the more information is encoded. Defining the
encoding delay as the time for the mutual information to reach
50% of its maximum, information plateaus earliest in the time
series of Migl/2 (Fig. 2D). Fast responders are therefore typically
more accurate, at least for such large stresses.

These general observations hold for transitions into osmotic
and oxidative stress (Fig. 2D), establishing a hierarchy: In terms
of the information and encoding delays, specialists (in blue) are
followed by the environmental stress response (in pink), which
in turn is followed by the others. The details of this hierarchy,
however, are stress-specific, indicating that the dynamics of the
transcription factors may encode not only the presence but also
the nature of the environmental transition.

Detecting the Nature of Environmental Change. We therefore
extend our method to calculate the mutual information between
a single-cell time series and the four environmental states: rich
medium (before the environmental transition) and the three
stresses (after the transition). Not only do we estimate the
mutual information (Fig. 34), but we can also predict how a
typical time series is likely to be classified as a function of
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Fig. 2. A hierarchy of information encoding, both in bits and encoding delays, holds across environmental transitions. (A) From population measurements
(51 Appendix, Fig. $3), each new environment—carbon stress (0.1% glucose), osmotic stress (0.4 M NaCl), or oxidative stress (0.5 mM H,0,)—reduces growth
compared with growth in rich medium (2% glucose). (B) For 10 transcription factors, we quantify nuclear localization across four environments using a
step change from rich medium to stress at t = 0. The median and interquartile range are shown. (C) In response to carbon stress, the mutual information
(M) shows a hierarchy. The maximum possible information is 1 bit (dotted line). Mean and SD of two experiments per transcription factor are shown.
(D) The hierarchy's order is maintained for transitions into other stresses: Specialists (blue) encode the most information and are fastest, followed by the

environmental stress response (pink).

the duration of the environment (Fig. 3B and SI Appendix,
Figs. S11 and S12).

Although no single transcription factor reaches the maximum
of 2 bits, the time series of Msn2, Msn4, and, unexpectedly, Dot6,
carry sufficient information to identify three environmental cate-
gories (for example, two environmental states and the remaining
two states lumped together) (Fig. 34). We observe, however,
that the information is instead “spread” so that all environmen-
tal states are eventually classified with a >80% accuracy (Fig. 3B,
Dot6). In contrast, an ideal specialist should perfectly discrimi-
nate one environmental state and lump together the remaining
states to encode 0.8 bits (SI Appendix). Indeed, Hogl and Yapl
do encode this much information (Fig. 34), and their signaling
networks operate nearly optimally in these high stresses. After
only a few minutes, both specialists unequivocally identify their
associated stress and never report false positives (Fig. 3B, Yapl1).

Conditioning the mutual information on the identity of the
environmental states delineates specialists from the other tran-
scription factors (Fig. 34, Inset, and SI Appendix, Fig. S15), which
we term generalists because they encode information on multi-
ple types of stress. Nevertheless, these groups are not mutually
exclusive: Migl is not only a specialist for carbon stress, but also
carries information on the other environmental states at late
times, particularly osmotic stress, for which the probability of
correctly identifying the environment is more than twice the 25%
probability of a random choice (Fig. 3B).

Detecting the Magnitude of Environmental Change. In such high
stresses, specialists appear unnecessary because the generalists
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identify stress so well, but this situation changes if we consider
transitions into stresses of lower magnitude (Fig. 3C and SI
Appendix, Fig. S10). From rich medium, we apply four differ-
ent levels of the same type of stress and estimate the mutual
information between the time series of translocation and the five
environmental states.

Specialists now outperform generalists. Considering the mutu-
al information between the time series and all pairs of the differ-
ent levels of stress (Fig. 3D and SI Appendix, Fig. S13), we see
that distinguishing between adjacent levels is most challenging,
and generalists, but not specialists, can often only identify high
stress.

Generalists and specialists also encode information differ-
ently: Generalists often use their entire time series, whereas
specialists only do so to distinguish stresses of lower magnitude.
By calculating the mutual information between summary fea-
tures of the single-cell time series and the environmental state
(SI Appendix, Figs. S16 and S17), we find that the amplitude
of a specialist’s initial translocation can identify its associated
stress if that stress is sufficiently severe (yellow dots in Fig.
34), explaining specialists’ short encoding delays. For transi-
tions into stresses of lower magnitude, however, information
is encoded in the dynamics of the specialists’ response (yel-
low dots in Fig. 3C). Generalists can encode twice the amount
of information in their time series compared with the highest
information encoded by any single time point, and both the
timing of their initial translocation, particularly for Msn2 and
Dot6, and the shape of the times series can be important (S
Appendix).

Granados et al.
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For three of the four generalists considered, there is a sub-
stantial correlation between the amount of mutual information
encoded and the severity of the stress (estimated by its reduc-
tion of growth compared with growth in rich medium) (Fig. 3E).
This correlation may reflect that generalists are typically involved
in regulating growth, through, for example, affecting translation
(16). Specialists, in contrast, do not encode more information if
their cognate stress is more severe (Fig. 3E).

Generalists vs. Specialists. To better understand the differences
between generalists and specialists, we ask how the transcription
factors are organized within the cell’s network of signal trans-
duction. Using data on the substrates of kinases (22), we confirm
(16) that the generalists are either directly or indirectly targets of
protein kinase A (which has isoforms Tpk1-3) and TORC1 or its
downstream kinase Sch9 (S6 kinase) (Fig. 44). The generalists
therefore do respond to the cell’s potential for growth: Protein
kinase A orchestrates the cell’s response to the availability of glu-
cose (16), and TORC1 controls the response to the availability of
nitrogen (16). Similarly, Mig] is sensitive to the levels of cellular
ATP through its regulation by AMP kinase (16). In contrast, the
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specialists Hogl and Yapl are mostly embedded in their own
signaling networks.

We quantify the redundancy between pairs of transcription
factors to determine if the cell’s organization of information
reflects the signaling network. If regulated by the same upstream
signaling, two transcription factors may be completely redun-
dant, so that when paired together, the amount of informa-
tion does not increase above that from any one factor alone.
By concatenating two time series (SI Appendix, Fig. S19),
we can estimate the mutual information from simultaneously
observing two transcription factors and so their redundancy
(Fig. 4B).

Plotting the redundancy (Fig. 4B), we see a network simi-
lar to the network of signal transduction: The generalists are
together in a core, from which the specialists are distinct. Msn2/4
and Dot6 appear to coordinate the behavior of specialists with
the general environmental stress response, having a substantial
degree of redundancy with the highest number of transcription
factors, including each other (size of the nodes in Fig. 4B).
Specialists are not redundant with other specialists, but each is
redundant with a distinct subset of the core generalists: Yapl1 is

PNAS | June5,2018 | vol. 115 | no.23 | 6091
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partly redundant with Msn2/4 but not Dot6; Hog1 and Mig2 with
Dot6 but not Msn2/4; and Migl is partly redundant with all three.

The redundancies imply that pairing a generalist with a spe-
cialist is best (Fig. 4C), and indeed such pairs typically encode
the highest information (SI Appendix, Fig. S20). With its dis-
tinct signal transduction (Fig. 44), a specialist can identify the
environmental state that is most poorly distinguished by a gener-
alist. For example, Msn?2 is best paired with Mig2 (SI Appendix,
Fig. S22).

As environments become more complex, multiple transcrip-
tion factors are needed to generate an internal representation.
Pooling the data to consider environments with different states
(Fig. 4D), the maximum mutual information plateaus as the
numbers of transcription factors increase, with four sufficing to
generate ~95% of the information. This increase comes both
from the distinct dynamics of the transcription factors (24),
such as differences in timing (SI Appendix, Fig. S21), and from
decreasing the effects of stochasticity by averaging the multiple
readouts.

6092 | www.pnas.org/cgi/doi/10.1073/pnas.1716659115

Discussion

In summary, we have shown that transcription factors can encode
enough information in the dynamics of their nuclear transloca-
tions to unambiguously report an environmental change if that
change is sufficiently large, that the nature of the change can
also be encoded although with some degree of error, that how
the information is encoded alters for changes of different mag-
nitudes, and that no single transcription factor can accurately
encode both the nature and magnitude of environmental change.

Information is transduced through two channels of special-
ists and generalists. Specialists are faster and can better identify
a transition into their associated stress than generalists, but
the variety of environments experienced by cells makes having
a specialist for every environment implausible. We postulate
that generalists avoid this constraint by providing an indirect
channel that responds not to the extracellular signals sensed
by specialists (25, 26), but to intracellular signals (27, 28), such
as changes in cAMP, uncharged tRNAs, and the availabil-
ity of amino acids (16) (Fig. 4E). By detecting physiological

Granados et al.



perturbations, generalists respond to broader ranges of stress
(SI Appendix, Fig. S23) and are agnostic to the environment’s
precise nature. Generalists are therefore necessarily slower than
specialists because they must wait for the environment to mod-
ify intracellular biochemistry. Indeed, we conjecture that the
stochastic pulsing of the generalists in constant environments
(19) is a response to spontaneous fluctuations in intracellular
physiology.

Consistent with more recent interpretations (29), our data do
not support a distinct environmental stress response controlled
by Msn2/4, but show that aspects of the behavior of Msn2/4 are
present in the dynamics of multiple transcription factors, such as
Dot6, Sfp1, and Mafl. These latter factors act to determine rates
of translation, consistent with the push—pull relationship between
stress and growth (12). In particular, we have demonstrated that
Dot6, although not Tod6, encodes the nature of environmen-
tal change in its dynamics to an accuracy almost comparable
with Msn2/4, implying that Dot6 may play a similar role in cel-
lular physiology. We find, too, that Mig1/2, although considered
a glucose specialist, encodes information on osmotic stress and
might better be classed as a generalist. Indeed, Migl/2 is acti-
vated by AMP kinase [Snfl, which responds to levels of ADP
(16)], consistent with our proposal that generalists respond to an
environmental change’s intracellular effects.

Finally, our results show that it is only through the collec-
tive dynamics of multiple transcription factors that cells can
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