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1 Materials and Methods

1.1 Strains and Media

Strains containing fluorescently labeled transcription factors that are known to translocate
(Hog1 1, Yap1 2, Msn2/4 3, Sfp1 4, Maf1 5, Tod6 and Dot6 6) were acquired from the S.

cerevisiae GFP collection 7 and validated by sequencing. Because of the poor growth of the
GFP collection’s Mig1-GFP strain in our experimental conditions, we generated an equiva-
lent strain (also validated by sequencing) in BY4741 using PCR-based genomic integration
of yEGFP-His from pKT0128 (AddGene). Strains indicated as having a nuclear marker
were derived from the GFP-labeled transcription factor strains by PCR-based genomic in-
tegration of mCherry-KanR from pBS34 (EUROSCARF) to tag the chromatin-associated
Nhp6A protein. Media used for propagation and growth was standard synthetic complete
(SC) medium supplemented with 2% glucose (unless specified otherwise). For stress media,
we added sodium chloride or hydrogen peroxide as indicated; carbon stress is SC medium
supplemented with lower concentrations of glucose (0.1% unless specified otherwise). Cells
were grown at 30�C.

1.2 Microscopy and microfluidics

1.2.1 Cell preparation and loading ALCATRAS

Overnight cultures were inoculated such that cells would reach mid-log phase by the fol-
lowing morning. Cells were diluted in fresh medium to OD600 0.1 and incubated an ad-
ditional 3–4 hours for loading into microfluidics devices at OD600 0.3–0.4. To expose
multiple strains to the same environmental conditions and to optimize data acquisition,
we used a multi-chamber version of ALCATRAS8,9, which allowed five different strains
to be loaded into distinct chambers but still be exposed to the same extracellular me-
dia (Fig. S1). Polydimethylsiloxane (PDMS) barriers between strains ensure that there is
no cross-contamination during loading. The ALCATRAS chambers were pre-filled with
growth medium with added 0.05% bovine serum albumin (BSA) to facilitate cell-loading
and reduce the formation of clumps of cells.

The microfluidic chamber and the syringe pumps containing the extracellular media
were located inside an incubation chamber (Okolabs) that maintained a constant temper-
ature of 30�C. We used a 60⇥ 1.4 NA oil immersion objective (Nikon). The Nikon Perfect
Focus System (PFS) ensured consistent focus over the experiment. Fluorescence imaging
was performed with an OptoLED light source (Cairn Research). Images were acquired
using an Evolve 512 EMCCD (Photometrics), and we correct for a delay of a few seconds
in image acquisition as the microscope moves between different positions.

1.2.2 Changing the extracellular environment

Syringe pumps (Aladdin NE-1002X) were used to supply media at 4 µL/min to the device,
and an external mixer (a sterile metal T-junction) allowed switching between different
media. Cells were grown with imaging for 5 hours in rich medium (3 hours for transitions to
oxidative stress) before setting the pumps to supply stress medium for growth for a further
5 hours. Sharp switches were achieved by programming the pumps to flush 450 µL of stress
medium through the mixer at 150 µL/min. Following the switch, the first pump continued
to withdraw at 0.5 µL/min with the second pump supplying stress medium at 4.5 µL/min
to maintain an overall rate of 4 µL/min to the device. The first pump supplied rich media
in all experiments. For the stress-type experiments, the second pump supplied medium
either containing 0.1% glucose (carbon stress), supplemented with 0.4 M sodium chloride
(osmotic stress), or supplemented with 0.5 mM hydrogen peroxide (oxidative stress). For
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the stress-level experiments, the second pump supplied medium containing 0.8%, 0.4%,
0.2% or 0.1% glucose (carbon stress); medium supplemented with either 0.1 M, 0.2 M,
0.3 M or 0.4 M sodium chloride; or medium supplemented with either 0.22 mM, 0.28 mM,
0.36 mM or 0.50 mM hydrogen peroxide. The dye Cy5 was added to the syringe containing
stress medium to monitor its arrival time and the sharpness of the switch.

1.2.3 Image segmentation and quantification of nuclear localization

During each experiment, we acquired bright-field and fluorescence images at five z-sections
spaced 0.6 micron apart. The maximum projection of these images (the maximum pixel
values across all z-sections) was used for quantification. The Cy5 channel was acquired
in a single focal plane. Cells were segmented from bright-field images using the DISCO
algorithm 10,11, which identifies cell centres with a support vector machine (SVM) and cell
edges with an active-contour-based method applied to the bright-field z sections.

We quantified the nuclear accumulation of transcription factors by calculating the ratio
between the average of the five brightest pixels within the cell and the median fluorescence
of the whole cell. This widely-adopted measure 12–14 is robust to systematic multiplicative
variations in image intensity between time-points (a small but not insignificant source of
experimental error). We validated its use for transcription factors where this measure
has not been applied before (Dot6, Tod6, Sfp1 and Maf1) and also for Mig1 where it
has 14 (as a positive control) by adding a nuclear marker (Nhp6A-mCherry) (Fig. S2).
The ratio of nuclear and cytoplasmic fluorescence correlated (R2 = 0.92 over combined
data) with the measure obtained without a nuclear marker, and the choice of measure did
not affect our calculations of mutual information (Fig. S5). Therefore, we performed all
other experiments without a nuclear marker to reduce the time of image acquisition and
so increase the number of cells monitored.

1.2.4 Numbers of cells

With our multi-strain experimental set-up (Fig. S1), we can monitor on average 150 cells
per strain (5 strains per assay) at a sampling rate of 2.5 minutes. Biological replicates
(identical experimental conditions applied to different cultures of the same strain) were
performed on different days. Table 1 gives the number of cells for the stress-type exper-
iments (Fig. 2 & 3A); Table 2 gives the number of cells for the stress-level experiments
(Fig. 3C); and Table 3 for the transition from rich media to rich media (Fig. S8.)

Table 1. Number of cells in each of the stress-type experiments

Replicate 1
Msn2 Msn4 Dot6 Tod6 Sfp1 Maf1 Mig1 Mig2 Hog1 Yap1

Oxidative stress 162 183 184 163 171 159 207 219 205 237
Carbon stress 178 202 198 132 164 219 199 191 190 215
Osmotic stress 208 209 212 215 213 191 206 186 211 202

Replicate 2
Msn2 Msn4 Dot6 Tod6 Sfp1 Maf1 Mig1 Mig2 Hog1 Yap1

Oxidative stress 166 166 186 172 208 183 217 209 308 131
Carbon stress 117 211 219 216 155 208 183 223 97 127
Osmotic stress 226 195 107 142 154 190 210 198 206 124

1.3 Plate reader experiments

Fitness penalties were estimated using plate readers (Infinity M200, Tecan Group Ltd.,
Switzerland) and an established protocol 15. Cells were cultured for 16 hours in SC with
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Table 2. Number of cells in each of the stress-level experiments

Mig1 Msn2 Dot6 Sfp1 Maf1
0.8% glucose 181 177 182 161 197
0.4% glucose 209 177 162 121 233
0.2% glucose 203 195 204 212 214
0.1% glucose 204 185 195 178 120

Hog1 Msn2 Dot6 Sfp1 Maf1
0.1 M NaCl 183 160 194 159 185
0.2 M NaCl 196 172 169 107 200
0.3 M NaCl 184 198 180 185 77
0.4 M NaCl 210 230 224 199 143

Yap1 Msn2 Dot6 Sfp1 Maf1
0.22 mM H2O2 193 171 218 194 188
0.28 mM H2O2 185 109 206 189 181
0.36 mM H2O2 149 199 150 249 191
0.50 mM H2O2 270 186 186 144 182

Table 3. Number of cells in each of the rich-to-rich transition experiments

Msn2 Msn4 Dot6 Tod6 Sfp1 Maf1 Mig1 Mig2 Hog1 Yap1
163 169 156 184 187 153 163 94 133 85

2% glucose at 30�C with ODs maintained below 0.6, diluted to an OD of 0.05 with SC in
2% glucose and incubated for a further 5 hours, before being spun down, washed in the
appropriate stress media, spun down again, resuspended in stress conditions in a 96-well
plate and placed in the plate reader.

1.4 Data availability

Data are freely available at http://dx.doi.org/10.7488/ds/2214

2 Estimating fitness penalties

We estimate fitness penalties for the different stresses using bulk measurements made
in plate readers. OD measurements are corrected for non-linearities in the relationship
between OD and numbers of cells 15,16 and by the measured OD of wells containing only
media. For each well, the plate reader returns a growth curve of the OD versus time of a
growing population of cells. From these growth curves, we use a Gaussian process with a
Matern covariance function to estimate the growth rate 17.

The fitness penalties are defined in comparison to growth in 2% glucose (denoted c for
control). We first use the growth curve and the growth rate as a function of time to write
the growth rate, �, as a function of OD: � = �(o). Then the fitness penalty, �w, is defined
as

�w =

Z omax

omin

do
�c(o)� �(o)

omax � omin
(1)

where omin and omax define the range of ODs shared between the two strains (the control
in 2% glucose and the test strain in stress) (Fig. S3A). Conditions that alter mean growth
rates (averaged over ODs) substantially from the mean growth rate in 2% glucose therefore
impose high fitness penalties (Fig. S3B). Integrating over OD rather than over time means
that the growth curve is used to calculate fitness rather than only its end points:

R
dt�(t) =R

dt d
dt log o = log(omax/omin).
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3 Estimating the mutual information

3.1 Data preparation

We normalized the single-cell time-series of nuclear localization using the population’s
mean (µ) and standard deviation (�) across the 20 time-points (50 min) before the stress
was introduced from all cells in a single microfluidics experiment. For each time-series,
we applied a z-normalization: for cell i: xi(t) ! (xi(t) � µ)/�. After normalization, the
steady-state (pre-shock) nuclear localization across the population of cells then has a mean
of approximately zero and a standard deviation of approximately one.

This normalization scales the time-series, but conserves cell-to-cell variation. The nor-
malization was applied for consistency in calculations where classification of time-series
comprised multiple experimental conditions (i.e. for stress-type, Fig. 3A, and stress-level,
Fig. 3C, classifications).

The exact time-point at which the transition takes place (t = 0) is detected using the
signal from the Cy5 dye. For each experiment, we partition the time-series at t = 0 to
generate two environmental states: the 20 time-points before the transition are labeled
as rich media data and the 20 time-points after the transition are labeled as stress data.
For experiments addressing the presence of environmental change (Fig. 2C & D), we train
and test the classifier using these two environmental states. For environmental transitions
comprising more than two new environmental states (Figs. 3 & 4), we merged the rich
media segments of each individual experiment into a single matrix of cells that is then
randomly sampled.

3.2 Estimation of mutual information through decoding

Let data D = {(x0
1, y1), (x

0
2, y2), . . . , (x

0
n, yn)} consist of i = 1, . . . , n pairs of time-series of

nuclear localization in individual cells, x0
i, and their corresponding environmental labels,

yi. Time-series are sampled at uniform time intervals and are represented as t = 20
dimensional vectors, normalized as described above by subtracting the pre-stress mean
and dividing by the pre-stress standard deviation. The labels represent the state of the
external environment (the input signal) and can take on q discrete values: yi 2 Y =
{s0, s1, . . . , sq�1}. For Fig. 1C, for example, a total of n = 210 time-series of nuclear
localization for Sfp1 are collected and labeled either with s0, denoting rich medium (2%
glucose), or with s1, denoting low (0.1%) glucose.

Our goal is to estimate the mutual information, MI(x0; y), between the complete,
discretely-sampled time-series, x0, and a discrete environment, y. Given the environment,
the t-dimensional conditional distribution P (x0|y) describes the probability of observing a
particular time-series given the environmental condition, and our individual cell time-series,
x0
i, are independent and identically distributed samples from that distribution.

For an input distribution P (y), recall that the mutual information between random
variables y and x0 is defined as follows 18:

MI(x0; y) =
X

y2Y
P (y)

Z
dx0P (x0|y) log2

P (x0|y)
Px(x0)

, (2)

where P (x0) =
P

y P (y)P (x0|y) follows by marginalization from the known P (y) and
P (x0|y).

A direct evaluation of Eq. 2 is intractable because the high dimensionality of P (x0|y)
prevents us from robustly sampling this distribution despite the hundreds of time-series
samples at our disposal. To make the problem tractable, one can choose a parametric form
for P (x0|y) (e.g., by assuming it is a multivariate normal distribution, which would require
only sampling the mean time-series and the covariance matrix), use a binless estimator
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(e.g., kNN 19 as adopted by Voliotis et al. 20 and Selimkhanov et al. 21, which, however,
makes assumptions on the metric of the space of time-series and still typically requires
potentially prohibitive numbers of time-series), or use the decoding methodology outlined
below, which traces its roots to early applications in neuroscience 22,23.

The central idea of the decoding-based estimator of mutual information is to construct
a classifier function that operates on individual time-series of nuclear localization and
outputs an estimate of the environmental state, i.e., to look for a function f : x0 ! ŷ that
‘decodes’ the responses. Then, the random variables y, x0 and the state estimated from
the nuclear localization time-series, ŷ, form a Markov chain:

y
P (x0|y)����! x0 f�! ŷ, (3)

where the first mapping is stochastic, given by P (x0|y), and the last mapping through the
classifier function f is deterministic. The data processing inequality 18 then guarantees
that

MI(x0; y) � MI(ŷ; y). (4)

If we can tractably estimate the mutual information between the true and decoded
environmental states, MI(ŷ; y), at the right-hand side of Eq. 4, from data, we will find a
lower bound on the mutual information of interest: MI(x0; y). This relationship is true
for any f , but classifiers with higher performance make the bound tighter. The decoding
estimate also has a biological interpretation as the information that can be extracted
on a single-shot basis (i.e., after receiving only one time-series) by the explicit decoding
procedure given by f . This decoding stands in contrast to MI(x0; y), which offers no
explicit procedure for extracting the identity of the environment from a time-series and even
allows a biologically implausible block code (several environmental changes and localization
responses are observed in succession before the cells would jointly decode a sequence of
appropriate responses).

Note that the input distribution over possible environmental states puts a theoretical
upper bound on the possible information of I⇤ = H(y), where H(y) is the entropy of y
and I⇤ = log2 q bits for a uniform distribution with q environmental states. This maxi-
mum can only be achieved when the classifier function f can perfectly (i.e., without any
misclassification errors on the testing data, ŷ = y) identify each environmental state solely
from the time-series x0.

An advantage of using the decoding estimator is its tractability. The classifier function
maps responses back from the t = 20 dimensional space to the discrete space of environ-
mental states, Y. To obtain MI(ŷ; y) we should then compute, in analogy to Eq. 2:

MI(ŷ; y) =
X

y2Y
Py(y)

X

ŷ2Y
P (ŷ|y) log2

P (ŷ|y)
Pŷ(ŷ)

. (5)

All the distributions involved are discrete and low dimensional and thus can be empirically
well estimated from the data D on n ⇠ O(100) individual time-series (e.g., the distribution
P (ŷ|y) is a q ⇥ q table, with q typically being small: 2  q  7 for our experiments).

To construct an estimator, we replace in Eq. 5 the distribution P (ŷ|y) with its empirical
estimate, M(ŷ, y) that we evaluate (over test data, as explained below in detail) from data
D. The matrix M is simply the confusion matrix of the classifier, i.e., the empirical
probability that the classifier outputs environmental state estimate ŷ given that the true
state was y. Formally, the fraction of time-series classified as state i given that the actual
state j is:

M(ŷ = si, y = sj) = P (y = sj)⇥
X

(xr,yr)2Dtest

I [f(xr) = si]

Dtest
⇥ I [yr = sj ] , (6)

7



where: f is the classifier function; Dtest ⇢ D are the samples of test data and |Dtest| is their
number (these samples have not been used to train the classifier f); and I is an indicator
function, which is 1 when its argument is true and 0 otherwise.

Given the data D and the trained classifier f , which can assign the estimated state
ŷ for each time-series, we can compute the confusion matrix in Eq. 6 by iterating across
testing data and then use that matrix to evaluate MI in Eq. 5 by direct summation.

In detail, our algorithm proceeds as follows:

1. Split the complete dataset D into disjoint training data, Dtrain ⇢ D, comprising 70-
80% of the samples, and testing data, Dtest ⇢ D containing the rest of the samples.

2. Train classifier on training data, Dtrain = (x0
i, yi):

(a) Perform principle component analysis on the time-series x0 in Dtrain across all
conditions to identify the top k principal vectors that span most of the variance.
In general, we use k = 5 to preserve � 80% of the variance, which holds across
all transcription factors probed in the stress-type experiments (Fig S4A). As
necessary, however, we choose k such that mutual information is maximized on
test data on a case-by-case basis.

(b) Project time-series x0 into the k-dimensional space, x, for all time-series in D.
(c) Train a linear Support Vector Machine (SVM) classifier f on x for the time

series in Dtrain. We used the LIBSVM implementation with the ‘one-against-
one’ approach to extend to more than two classes 24.

3. Apply f on projected testing data x for the time series in Dtest, to evaluate the
confusion matrix in Eq (6) and so estimate MI via Eq (5). For our data (n ⇠ 100), the
estimates of information are stable with respect to the number of observed time-series
(Fig. S4C). In general, however, the dependence of the estimate with the number of
samples should be determined and de-biasing performed if needed 25.

4. Use bootstrapping by repeating the procedure from step 1 to 3 after randomly re-
sampling the test and training sets. The procedure is repeated 100 times (unless
otherwise specified) to get the mean of the estimator and its standard deviation,
which we use a measure of error.

We note that the PCA step was motivated by data with time-series of different length
for different transcription factors and is not in principal necessary for our data when
all time-series have equal numbers of data points measured with the same time interval.
Nevertheless, for cases where we explore different encoding delays through changing the
duration (dimensionality t) of the time-series, x0, and for cases where we decode from
multiple transcription factors by concatenating their time-series, the PCA approach with
constant k ensures that the input to the classifier always has the same dimension. This
constraint avoids potential bias because of over-fitting, which can happen if the input to
the classifiers has variable dimensions, and so avoids any related problems when comparing
the estimated information across different decoding setups.

Fig. S4B shows the dependence of the estimated information on k; Fig. S4C shows
its dependence on the number of observed time-series. Fig. S5 demonstrates that the
estimates of mutual information are not sensitive to the measure used to quantify nuclear
localization.

We note further that common choices for ensemble classifiers and nonlinear (kernelized)
SVMs do not outperform the linear classifier on our data. Specifically, we tried the Random
Forest 26 and XGBoost 27 ensemble classifiers and the radial basis function (RBF) kernel
in the SVM. For each calculation, we optimize over a large grid of input parameters (for
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Random Forest, the number of trees to grow Ntree 2 [50�500] and the number of variables
randomly sampled as candidates at each split S 2 [1 � 20]; for XGBoost, the number
of iterations Niter 2 [20 � 200] and maximum tree depth D 2 [3 � 10]; and for SVM
with the RBF kernel, the cost C 2 [2�3 � 29] and the kernel parameter � 2 [2�15 � 23])
by performing four rounds of 4-fold cross-validation for each parameter set and then for
the five best-performing parameter sets, taking 100 bootstraps as described above and
reporting MI for the highest of these bootstraps. For the ensemble classifiers and SVM
classifiers with nonlinear kernels, training and testing was performed on the time series
x0 rather than on the projection onto PCA components. There is little change in the
estimated mutual information for both the q = 4 stress-type and our q = 5 stress-level
experiments (Fig. S6).

3.3 Decoding error and mutual information

We can summarize the classifier’s performance as the fraction of correctly and incorrectly
classified cell time-series. For example, for a transition in which two environmental states
S are possible (s0 before the transition and s1 after the transition) the confusion matrix
M is:

M =

✓
P (Ŝ = s0|S = s0) P (Ŝ = s1|S = s0)
P (Ŝ = s0|S = s1) P (Ŝ = s1|S = s1)

◆
, (7)

where S represents the actual environment and Ŝ represents the environment predicted by
the classifier.

More generally, the confusion matrix M defines an empirical estimate of the conditional
probability distribution for the predicted environment Ŝ given the actual environment S,
and its elements Mij represent the probability that an element, whose actual state is i,
was classified as j. Therefore the elements in the diagonal represent correct classification;
off–diagonal elements represent error.

The fraction of correctly classified cells is the weighted average over the diagonal ele-
ments: fcorrect =

Pq
i=1 P (S = si)P (Ŝ = si|S = si). The decoding error is 1� fcorrect.

3.4 Mutual information is robust across experimental repeats

We calculated the mutual information and decoding error for all 60 experiments in the
screening (30 experiments shown in Fig. 2B plus an additional biological replicate for each
experiment).

The calculations of decoding error and mutual information are robust across biological
replicates and show only small fractional differences despite experimental variation and
differing numbers of cells in each experiment (Figs. S7A & B). There is a monotonically
decreasing relation between the decoding error and mutual information for the q = 2
transition (Fig. S7C). As a control, we calculated the information for the same experiments
but with randomized data (random permutation of all time-points in each time-series)
which yielded no information (Fig. S7D), as expected for random classification (P = 0.5
and MI = 0). Finally, environmental transitions in which transcription factors showed no
visible response (e.g., Hog1 in either carbon or oxidative stress and Yap1 in either carbon
or osmotic stress) also yielded mutual information close to zero bits (Fig. S7D).

For the stress-type (q = 4) experiments, the percentage difference in mutual information
between Fig. 3A and the biological replicate was under 15% and rank order was preserved.

We note too that estimating the mutual information with an explicit transition from rich
media to rich media rather than using the time-series in rich media before the environmental
transition produces no substantial changes (Fig. S8).
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3.5 Estimating the encoding delay

The long-time mutual information reports the maximum amount of bits encoded by a
given transcription factor, i.e. the value at which information plateaus as a function of the
duration of the response, and which we refer to as MIlt. The encoding delay reports the
speed at which information is encoded by the transcription factor and is defined as the time
taken for the mutual information to reach 50% of its plateau value. For each transcription
factor, a logistic fit was applied to the mutual information as a function of the response
duration to estimate MIlt and tencoding using the formula: MIlt/(1+exp(�↵(t� tencoding)))
with ↵ parameterizing the steepness of the curve. The values for MIlt and tencoding reported
are averages and standard deviations across 2 independent biological replicates.

3.6 Mutual information for multi-state transitions with q > 2

3.6.1 Behaviour of the ideal specialist

For the q = 4 transition, an ideal specialist (indicated by a dotted line in Fig. 3A) would
correctly identify one environmental state, but randomly classify all remaining states. As-
suming a specialist for environmental state s2, the confusion matrix for this hypothetical
case would be:

M =

0

BB@

1/3 0 1/3 1/3
0 1 0 0

1/3 0 1/3 1/3
1/3 0 1/3 1/3

1

CCA (8)

so that, for example, P (Ŝ = s2|S = s2) = 1 and P (Ŝ = s3|S = s0) = 1/3. Each row of
M adds up to 1. An ideal specialist always correctly senses its associate stress and never
reports another environmental state as this stress.

Direct calculation of the mutual information from Eq. 8 yields 0.81 bits. We also know
that the mutual information is bounded above by the entropy of the distribution of input
(the distribution of the environmental states) 18. Although this distribution has 4 equally
probably states, the distribution should appear for an ideal specialist as its associated
stress, which has a probability of occurrence of 1/4, and just one other state, which is
not its associated stress and has a probability of occurrence 3/4. The entropy of this
apparent distribution is also approximately 0.8 bits, and the mutual information for an
ideal specialist is equal to this upper bound. Similar calculations can be applied for the
hypothetical situation of a 2-state specialist (one that distinguishes 2 states perfectly but
lumps together the remaining states into a single category) and the mutual information is
1.5 bits.

Fig. 3A shows that both Hog1 and Yap1 perform as ideal specialists (MI ⇡ 0.8 bits),
decoding nearly optimally their own environmental state but classifying randomly, and
therefore lumping together, all other states.

3.6.2 Estimating the probability of predicting each environmental state

For all transcription factors, we can use the confusion matrix as an estimate of the condi-
tional probability of predicting the environmental states for the data of Fig. 3A (Fig. S11)
and of predicting the levels of stress for the data of Fig. 3C (Fig. S12).
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3.6.3 Distinguishing one level of stress from another

For each transcription factor and each type of stress, we calculated the mutual information
between all possible pairs of levels of stress and their respective time-series of nuclear
localization (the stress-level experiments of Fig. 3C with q = 5). This pairwise mutual
information indicates whether the two levels of stress can be distinguished from each other
by observing a typical single-cell time-series and is presented using a heat map (Fig. S13).
Although the specialists show a similar change in information between neighbouring levels
of stress for all levels, the generalists have more of a threshold response, particularly for
oxidative stress where only high levels of stress can be distinguished.

In general, the pairwise mutual information matches differences in the fitness penalty
(Fig. S14). Transcription factors that indirectly affect growth (Dot6, Sfp1, and Maf1) have
the highest rank correlation.

3.6.4 Condition-specific information

The condition-specific information 23 is the mutual information obtained by considering
responses from only one environment and quantifies how different that environment’s re-
sponses are from the expected range of responses. Expressed in terms of the decoding
estimator, the condition-specific information can be written as:

I (ŷ, y = sj) =
qX

i=1

P (ŷ = si|y = sj) log2

✓
P (ŷ = si|y = sj)

P (ŷ = si)

◆
. (9)

The mutual information is an average over j of I(ŷ, y = sj) weighted by P (y = sj) (Eq.
5).

The condition-specific information between the single-cell nuclear localization time-
series and each type of stress is plotted in Fig. S15. High values of condition-specific
information for a given environment show that it is easily distinguished from the other
environments. For example, all the specialist transcription factors (Mig1 and Mig2 for
carbon stress; Hog1 for osmotic stress; Yap1 for oxidative stress) show high condition-
specific information for their associated stress. Indeed, for Hog1 and Yap1, the condition-
specific information in the non-responsive conditions is close to log2 (4/3) ⇡ 0.4 bits (the
value expected for an ideal specialist given four environmental states for which P (ŷ =
si 6=k|y = sj 6=k) = 1/3 where k denotes the specialist’s associated stress) because there is
information in identifying the absence of the stress. The generalist transcription factors do
not show strong preferences for any environment. Nevertheless, Msn2 and Msn4 appear to
favour both oxidative stress and identifying the absence of stress (rich medium), and Dot6
appears to favour osmotic stress and is complementary to Msn2/4.

3.7 Features of the time-series of localization that encode mutual infor-
mation

The mutual information between the environmental states and the single-cell time-series
determines the maximum information available to downstream processes, but we do not
know how that information is either encoded or potentially decoded by the cell. Neverthe-
less, our estimates of mutual information show that at least that much information could
be recovered using a general linear mechanism of decoding, given our use of a linear SVM.

We can gain additional insight by calculating the mutual information for suitable fea-
tures derived from the single-cell time-series. For example, if almost all of the mutual
information between a set of time-series and the environmental transitions could be cap-
tured at a single time-point, then a transition could be detected simply by monitoring the
amplitude of the response at that time-point and monitoring the time-series is unnecessary.
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We therefore calculated the mutual information at each single time-point and also for a
selection of other features of the time-series (Fig. S16A) from both the stress-type (q = 4)
and stress-level (q = 5) experiments.

Irrespective of the chosen feature, transcription factor, or environments, the mutual
information of the full time-series is always greatest and a response duration of 25 min-
utes is sufficient to reach the long-time mutual information for most transcription factors
(Figs. S9 & S10). Whether for stress-type or stress-level experiments, the mutual informa-
tion contained in any single time-point never exceeds 1 bit (Fig. S17). This observation
highlights the importance of dynamic responses for encoding complex inputs.

We find that for distinguishing the type of stress, generalists encode with their dynam-
ics, whereas the specialists need just a single time-point to identify their associated stress if
the stress is sufficiently high (Fig. S17A). In contrast, for distinguishing the level of stress
(Fig. S17B), the specialists then use dynamics. For levels of either osmotic or oxidative
stress, the generalists Dot6 and Msn2 encode little more in their full time-series than they
do in a single time-point.

If each single-cell time-series is ordered by rank, then information about timing is lost,
but common summary statistics are retained, such as the median and interquartile range
(Fig. S16B). This ‘rank ordered’ feature captures most but not all of the mutual information
available in the full time-series. There are notable exceptions: Sfp1 and Maf1 still require
time-ordering to distinguish stress type (Fig. S17A), and Msn2 and Dot6 require time-
ordering to distinguish levels of carbon stress (Fig. S17B).

Features used to describe the shape of the adaptive pulse 21 provide information, but
each by itself provides less than 1 bit (Fig. S17) If these features are considered in com-
bination, however, they can match and in some cases exceed the information of the ‘rank
ordered’ feature. This highlights the importance of timing for Msn2, Msn4 and Dot6 in
distinguishing stress type (Fig. S17A) and for Msn2 and Dot6 in distinguishing levels of car-
bon stress (Fig. S17B). In any case, the combined information of these peak features only
matches that of the full time-series if all the available information is contained in a single
time-point (by the amplitude) such as for the specialists Yap1 and Hog1 in distinguishing
stress type (Fig. S17A).

3.8 Estimating channel capacity and optimal input distributions

For the estimations of mutual information in the main text we assume a uniform distribu-
tion of inputs because our focus is on the signal-to-noise ratio in the single-cell time-series,
but the results do not change substantially if we use the input distribution that maximizes
the mutual information (Fig. S18). We used the Blahut-Arimoto algorithm 18 to estimate
this maximal mutual information (the capacity). Based on the confusion matrix, the al-
gorithm finds the channel capacity through iterative optimization and outputs both the
capacity and the optimal input distribution. For the environment with q = 4 (rich media
and three types of high stress), we note that generalists perform close to capacity, but not
specialists, implying that generalists favour a uniform distribution of environmental states.

3.9 Mutual information for pairs of transcription factors as outputs

The mutual information for pairs of transcription factors was calculated using concatenated
time-series of nuclear localization. A concatenated time-series for two transcription factors
TF1 and TF2 comprises t time-points of the response of TF1 followed by t time-points of the
response of TF2. The new time-series is treated as the response of a single cell. To account
for variability and possible bias in the synthetic data, we calculated the mutual information
for 50 bootstrap replicates, each time generating different datasets of concatenated time-
series by sampling randomly time-series of TF1 and TF2.
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Our data only comes from strains in which only one transcription factor is fluorescently
tagged, and our estimation of mutual information by concatenating time-series we shall
show assumes conditional independence between the activation of different transcription
factors given the environmental state. To estimate the mutual information for a distri-
bution of time-series of a single transcription factor (TF), we must estimate P (TF|S)
where S is the state of the environment; to estimate the mutual information for the dis-
tribution of a pair of time-series from two tagged transcription factors, we must estimate
P (TF1,TF2|S). For two concatenated time-series, we can estimate P (TF1|S)P (TF2|S).
Therefore we require P (TF1,TF2|S) = P (TF1|S)P (TF2|S), which is conditional indepen-
dence, if the mutual information estimated from the concatenated time-series is to equal
the mutual information from doubly tagged strains.

To confirm that the assumption of conditional independence holds, we created two-
colour strains in which we tagged two transcription factors using GFP and mCherry and
applied three different medium: 0.4M NaCl, 0.1% glucose, and rich media (2% glucose).
We calculate the mutual information between this 3-state environment and the dynamics
of the transcription factors by concatenating the GFP and mCherry time-series from each
cell and by concatenating GFP and mCherry time-series randomly selected from different
cells (mimicking two separate experiments). There is no substantial difference between
the mutual information calculated from time-series from the same cell and the mutual
information calculated from time-series from different cells (Fig. S19).

3.9.1 Information redundancy between pairs of transcription factors

The degree of redundancy between pairs of transcription factors was computed for the
stress-type experiments (q = 4) using the formula

r = 1� MI12
MI1 + MI2

(10)

where MI12 is the mutual information calculated from the pair (the concatenated data)
and MIi is the mutual information calculated individually. If the two transcription fac-
tors are completely independent (MI12 = MI1 + MI2), then r = 0; if the transcription
factors are completely redundant (MI12 = MI1 = MI2), then r = 1/2. We observed posi-
tive redundancy values for all the pairs investigated and never synergistic encoding where
MI12 > MI1 + MI2 and r < 0.

We report the average redundancy calculated from 2 independent datasets (a total of 6
experiments per transcription factor) and generated the dendrogram in Fig. 4B by applying
a clustering algorithm (heatmap function in R 28) to the matrix of redundancy.

From the redundancy matrix, we generated a network in which transcription factors
are represented as nodes and the length of an edge connecting two nodes is inversely
proportional to the redundancy between the corresponding transcription factors (more
redundant transcription factors are therefore closer to each other in the network). We
only display an edge between two transcription factors if the redundancy is greater than a
threshold value equal to the minimum across all pairs, such that all transcription factors
have at least one edge. We plotted the network using igraph 29 (with layout parameter
layout_with_fr) and an alternative version in which a less stringent cut-off value was
used to define the edges is shown in Fig. S20.

3.9.2 Relative timing of responses as an informative feature

We note that transcription factors translocate either into or out of the nucleus with dif-
ferent speeds. We define the response time with respect to t = 0 as the time at which
nuclear localization reaches 50% of either its maximum value for transcription factors that
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enter the nucleus or its minimum value for transcription factors that exit the nucleus. The
response time can be different for different transcription factors in the same condition and
for the same transcription factors across conditions. When considering pairs of transcrip-
tion factors, their individual response times also define a relative timing: the difference
between their response times.

We can estimate how much relative timing contributes to the mutual information by
calculating the difference between the mutual information of the pair and the mutual
information of the pair after their time-series have been aligning to reduce differences in
response times. To artificially aligned the time-series, we calculate the response time for
the mean time-series of each transcription factor and then align by shifting time for all the
individual time-series for that transcription factor by this response time. On average, all
transcription factors then reach 50% activation at t = 0.

Pairs of generalists are more likely to encode information in their relative timing than
pairs of specialists (the aligned time-series of generalists have a mutual information reduced
by up to 40% but aligning hardly alters the mutual information for pairs of specialists)
(Fig. S21; p < 0.001). Pairs that include one generalist and one specialist also encode
information in the relative timing although to a lesser extent than pairs of two generalists.

3.10 Mutual information for multiple transcription factors as outputs

Using an analogous approach to the one used for estimating the mutual information for
two transcription factors, we generated time-series in which the time-series for more than
two transcription factors were concatenated. For a given condition, we systematically
concatenate randomly selected time-series of the first transcription factor with randomly
selected time-series from a second transcription factor, and the process repeated iteratively
to create time-series from n concatenated factors. The concatenated time-series then have
length n⇥ t, where t is the length of the individual time-series. We conserve the order of
the transcription factors.

Mutual information is calculated using the concatenated data (Fig. S22): for a q = 2
and q = 4 environment, we used the data from all transitions from rich media to high stress
(Figs. 2D & 3A); for a q = 5 environment, we used the data with multiple levels of osmotic
stress (Fig. 3C); for a q = 7 environment, we used rich media (before the transition) and
2 levels of carbon stress (0.1% and 0.4% glucose), 2 levels of oxidative stress (0.28 and
0.5 mM H2O2), and 2 levels of osmotic stress (0.2 and 0.4 M NaCl) (after the transition).
We exhaustively calculated the mutual information for all combinations of transcription
factors. To show the performance of the best combinations of transcription factors, we
report the maximum over all possible combinations in Fig. 4E.

For the environment with q = 7 states, the confusion matrix implies that the generalists
respond to categories of environments (Fig. S23)

3.11 Software availability

Both Matlab and R versions of the scripts used for estimating mutual information are
freely available at https://github.com/swainlab/mi-by-decoding

4 Construction of the yeast signalling network

The yeast kinase interaction (KID) database 30 was used to construct the signaling networks
that directly regulate the transcription factors. For each transcription factor, we retrieved
all upstream regulatory interactions (kinase!TF) reported in the database along with
interactions among the regulatory kinases (kinase!kinase). We then filtered for bona fide
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interactions using the KID score 30 — a measure of the literature evidence for kinase-
substrate interactions calibrated to maximize true positives — keeping only interactions
with a score greater than 3. Edges in the network were also weighted by the KID score.
Kinases that had only low-score interactions were removed. Although the interactions
reported in KID are directional, we show undirected interactions for simplicity.

We applied a hierarchical algorithm to find communities in the network
(fastgreedy.community from package igraph 29 in R-Bioconductor 28). The algorithm
merges nodes iteratively in communities while optimizing a modularity function. The
resulting communities (modules) of the network are shown in Fig. 4A. When performing
this neighbour analysis, the ten transcription factors and kinases were treated equally as
nodes in the network.

For plotting the network, we used the plotting function of igraph with layout parameter
layout_with_fr. The algorithm uses no a priori knowledge of the biological signaling
pathways, and so the communities found (corresponding to the different colors in Fig. 4A)
are based solely on the network’s architecture.

References

1. Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192(2):289–318.

2. Kuge S, Jones N, Nomoto A (1997) Regulation of yAP-1 nuclear localization in re-
sponse to oxidative stress. EMBO J 16(7):1710–1720.

3. Jacquet MM, Renault GG, Goldbeter AA (2003) Oscillatory nucleocytoplasmic shut-
tling of the general stress response transcriptional activators Msn2 and Msn4 in Sac-
charomyces cerevisiae. J Cell Biol 161(3):497–505.

4. Jorgensen P, et al. (2004) A dynamic transcriptional network communicates growth
potential to ribosome synthesis and critical cell size. Genes Dev 18(20):2491–2505.

5. Willis IM, Moir RD (2007) Integration of nutritional and stress signaling pathways by
Maf1. Trends Biochem Sci 32(2):51–53.

6. Lippman SI, Broach JR (2009) Protein kinase A and TORC1 activate genes for ribo-
somal biogenesis by inactivating repressors encoded by Dot6 and its homolog Tod6.
Proc Natl Acad Sci USA 106(47):19928–19933.

7. Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature

425(6959):686–691.

8. Crane MM, Clark IBN, Bakker E, Smith S, Swain PS (2014) A microfluidic system
for studying ageing and dynamic single-cell responses in budding yeast. PLoS ONE

9(6):e100042.

9. Granados AA, et al. (2017) Distributing tasks via multiple input pathways increase
cellular survival in stress. eLife 6:e21415.

10. Bakker E, Swain PS, Crane MM (2018) Morphologically constrained and data informed
cell segmentation of budding yeast. Bioinformatics 34(1):88–96.

11. Bakker E, Crane MM (2017) Source code for cell-segmentation software. Github

github.com/pswain/segmentation-software:23b5c2e.

12. Cai L, Dalal CK, Elowitz MB (2008) Frequency-modulated nuclear localization bursts
coordinate gene regulation. Nature 455(7212):485–490.

15



13. Hao N, O’Shea EK (2011) Signal-dependent dynamics of transcription factor translo-
cation controls gene expression. Nat Struct Mol Biol 19(1):31–39.

14. Lin Y, Sohn CH, Dalal CK, Cai L, Elowitz MB (2015) Combinatorial gene regulation
by modulation of relative pulse timing. Nature 527(7576):54–58.

15. Lichten CA, White R, Clark IBN, Swain PS (2014) Unmixing of fluorescence spectra
to resolve quantitative time-series measurements of gene expression in plate readers.
BMC Biotechnol. 14(1):11.

16. Stevenson K, McVey AF, Clark IBN, Swain PS, Pilizota T (2016) General calibration
of microbial growth in microplate readers. Sci Rep 6:38828.

17. Swain PS, et al. (2016) Inferring time derivatives including cell growth rates using
Gaussian processes. Nat Commun 7:13766.

18. Cover TM, Thomas JA (2006) Elements of information theory. (Wiley-Interscience,
Hoboken, New Jersey).

19. Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys

Rev E 69(6):066138.

20. Voliotis M, Perrett RM, McWilliams C, McArdle CA, Bowsher CG (2014) Information
transfer by leaky, heterogeneous, protein kinase signaling systems. Proc Natl Acad Sci

USA 111(3):E326–E333.

21. Selimkhanov J, et al. (2014) Systems biology. Accurate information transmission
through dynamic biochemical signaling networks. Science 346(6215):1370–1373.

22. Brunel N, Nadal JP (1998) Mutual information, fisher information, and population
coding. Neural Comput 10(7):1731–1757.

23. Borst A, Theunissen FE (1999) Information theory and neural coding. Nat Neurosci

2:947–957.

24. Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology 2(3):27:1–27:27.

25. Strong S, Koberle R, de Ruyter van Steveninck R, Bialek W (1998) Entropy and
Information in Neural Spike Trains. Phys Rev Lett 80:197–200.

26. Breiman L (2001) Random forests. Machine Learning 45(1):5–32.

27. Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system in Proceedings

of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’16. (ACM, New York, NY, USA), pp. 785–794.

28. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput

Graph Stat 5(3):299–314.

29. Csardi G, Nepusz T (2006) The igraph software package for complex network research.
Inter J Comp Syst 1695:1–9.

30. Sharifpoor S, et al. (2011) A quantitative literature-curated gold standard for kinase-
substrate pairs. Genome Biol 12(4):R39.

16



Rich
medium

Mother

Daughter

Trap
pillars

Stress
medium

External
mixer

Waste

2.

3.

1.

4.

5.

Fig. S1. Schematic showing the design of the 5-chamber ALCATRAS microfluidics
device. In ALCATRAS devices, mother cells become trapped between PDMS pillars by the flow
of media, which additionally carries budded daughters away and so prevents overgrowth in the
device 8. The 5-chamber version (gray square; chambers are numbered) allows for measurement
of five different strains under identical environmental conditions. Cells can be loaded using the
waste outlets. Cross-chamber contamination is avoided by PDMS filters (hash lines at left of each
chamber). During the experiment, media is introduced to the device via an external mixer to
enable switching between environments.
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Fig. S2. Nuclear localization can be quantified without a nuclear marker. A Transcrip-
tion factors are tagged with GFP, and mCherry added to NHP6A as a nuclear marker. Images
are for a representative cell exhibiting nuclear localization (top row: sfluorescence of the mCherry
and GFP tags; bottom row: the corresponding bright-field image and segmented cell (cyan: active
contour based on bright-field image) and nucleus (pink: watershed segmentation of NHP6A tag)).
B Nuclear localization, reported as the ratio of nuclear fluorescence (median inside segmented
nucleus) to cytoplasmic fluorescence (median of cell excluding segmented nucleus), for shifts from
rich media to carbon stress at time 0 either with (blue) or without (red) the nuclear marker. An
approximation of nuclear localization is the ratio of the mean of the cell’s 5 brightest pixels (Max 5
fluorescence) to the cell’s median fluorescence (Median fluorescence) 12. C This measure correlates
with that using a nuclear marker (linear regression in black with the estimated standard deviation
of the error in regression shaded).
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Fig. S3. The change in growth between 2% glucose and stress conditions defines a
fitness penalty that typically correlates with mutual information. A From time-series
data measuring the growth of a population of cells, we plot growth rate versus OD. The control for
growth in 2% glucose is shown in black; growth in stress (here in 2% glucose and 0.5 mM H2O2)
is shown in blue. We define the fitness penalty as the area between the curves (in pink) divided
by the largest common range of OD (the dashed line). B In general, low glucose is a more severe
stress than high salt which is a more severe stress than high H2O2 (median of n = 4 with SD as
error).
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Fig. S4. Estimating mutual information requires k = 5 PCA components and n ⇠ 100.
A Five principal components are sufficient to explain at least 80% of the variance in the single-
cell time-series for a q = 4 environment (the stress-type experiments of Fig. 3A). The cumulative
percentage variance is shown on the y-axis and k is the number of principal components. The cases
with lower values of q converge faster and fewer components are required. Nevertheless, we fix k = 5
for all the estimations for consistency. B Estimated mutual information versus k. Typically, having
k = 5 PCA components yields nearly maximal estimates of information. In the limit of infinite
samples, the MI curves should either monotonically increase or saturate with k; with a finite
number, n, of sample time-series, however, the information can start slowly decreasing because of
overfitting by the classifier. C Estimated mutual information for two environmental states (the
state before and the state after the transition: q = 2) using n time-series is approximately constant
above n ⇠ 100 time-series.
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Fig. S5. Mutual information is robust to the measure of nuclear localization. The
mutual information (MI) between the environment (q = 2: rich medium into carbon stress) and
time-series of nuclear localization (data from Fig. S2) was calculated for measures of nuclear local-
ization either requiring a nuclear marker (blue) or not (red). The shaded area shows 95% confidence
limits in the mean across (n = 52) bootstrap replicates.
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Fig. S7. Mutual information is robust across experiments. A The fraction of correctly
classified time-series and B mutual information is similar for each of 6 biological replicates of
a transition from rich media into carbon stress. The mean across replicates is in black with
the corresponding standard deviation shaded. The mutual information when the time-series are
randomly permuted is also shown. C Mutual information can be mapped to the decoding error.
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(0.01±0.003 bits). Experiments for transcription factors that do not respond to the environmental
transition also give approximately 0 bits (0.02 ± 0.01 bits). For comparison, the third box-plot
shows the mutual information for all 58 experiments in which the transcription factors do respond.
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Fig. S11. The probability of predicting the state of a q = 4 environment from a
time-series of nuclear localization. From the classifier, we can estimate the probability that
a single-cell time-series is predicted to be from one of the four possible environmental states (the
stress-type experiments with q = 4 in Fig. 3A). In the schematic, the time-series come from an
environment with osmotic stress, and the total error is therefore the proportion of time-series that
were not classified as being from osmotic stress. For each environment and for each transcription
factor, we plot how these probabilities change as a function of the duration of the environment.
The classification probabilities for Mig1, Yap1 and Dot6 are reproduced in Fig. 3B.
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Fig. S12. The probability of predicting that state of a q = 5 environment from a
time-series of nuclear localization. Analogous to Fig. S11, but considering environments with
5 levels of one type of stress (the stress-level experiments with q = 5 from Fig. 3C). The coloured
numbers on the left indicate the magnitude of the stress; the area plots indicate the probability of
predicting a particular level of stress from a single-cell time-series. The area corresponding to the
probability of identifying the correct level of stress is bounded by black lines. A Carbon stress; B
Osmotic stress; C Oxidative stress.
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Fig. S13. Transcription factors vary in their abilities to encode increasing levels of
stress in their dynamics of localization. For each transcription factor and type of stress, the
mutual information was calculated between all possible pairs of levels of stress and the correspond-
ing time-series of nuclear localization.
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Fig. S14. Mutual information between pairs of stresses typically correlates with the
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fitness penalty between all pairs of levels of stress was calculated for the stress-level experiments
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Fig. S15. Condition-specific information for transcription factors distinguishes spe-
cialists from generalists. The long-time condition-specific information (Eq. 9) between the
single-cell time-series of nuclear localization and the environmental state for each of the transcrip-
tion factors from the stress-type (q = 4) experiments. In the inset of Fig. 3A, this data is projected
along three axes (all but the condition-specific information in rich media). Error bars indicate
standard deviation across (n = 24) bootstrap replicates.
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Fig. S16. The mutual information of features derived from the localization time-
series indicates feature importance. A Features that characterize the adaptive pulse can
be calculated for each cell, as demonstrated on a Mig1 nuclear localization trace (green line) for
a transition from rich medium to 0.2% glucose. The median (grey line) and interquartile range
(shaded area) of all cells is shown for reference. B By rank-ordering the localization trace of each
cell in panel A, timing information is lost, but linear transformations of this data still provide
statistical features. C Features of the traces only reduce information (as expected by the data
processing inequality) and our algorithm is optimal since no additional information is gained by
concatenating hand-crafted features onto the time-series. Shown is the mutual information derived
from the Mig1 stress-level (q = 5) experiments. ‘All peak stats’ is the concatenation of five features:
the pulse features illustrated in panel A and the relative amplitude (ampl.), the ratio of amplitude
and initial localization value. For each feature, we show the mean and standard deviation (across
n = 100 bootstrap replicates) of the mutual information. D Mutual information of the features
compares favourably with estimates of feature importance from ensemble classifiers. In the top
panel is the mutual information of each feature; in the lower panels is the importance score of each
feature, obtained by training the specified ensemble classifier on a concatenated data set consisting
of the time-series and all peak statistics. The mean and standard deviation (across n = 100)
bootstrap replicates is shown.
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Fig. S17. Features of the localization time-series that encode mutual information.
Statistical features were derived from the normalized time-series of nuclear localization as described
in Fig. S16, and the mutual information calculated between these features and the state of the
environment. For each transcription factor, we show the mean and standard deviation (across
n = 100 bootstrap replicates) of the mutual information. A The mutual information of features
in the stress-type (q = 4) experiments. B The mutual information of features in the stress-level
(q = 5) experiments.
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Fig. S18. The capacity is similar to the mutual information calculated with a uniform
distribution of inputs. A, B, C The capacity calculated for the q = 2 data from Fig. 2 for
transitions from rich media into high stress is almost identical to the mutual information calculated
with a uniform distribution (yellow dots). D For specialists, but not most generalists, the capacity
for the q = 4 data from Fig. 3A is higher than the mutual information calculated with a uniform
distribution (yellow dots). E For different levels of stress (q = 5 data from Fig. 3C), the difference
between the capacity and the mutual information calculated with a uniform distribution is highest
for oxidative stress.

34



TF1:GFP
TF2:mCherry

3

2.5

2

1.5

0

3

2.5

2

1.5

0

0 25 50-2550

0 25 50-2550

Hog1:GFP
Msn2:mCherry

time (minutes)

N
uc

le
ar

 lo
ca

lis
at

io
n

TF2
Real pair
Synth pair

3-
w

ay
 M

I

1.5

1

0.5

0

TF1

Dot6-Msn2 Yap1-Msn2 Hog1-Msn2 Mig1-Msn2

Max possible MI

3-way stress type
A B

Fig. S19. Transcription factors have dynamics that are approximately independent
given a particular environment. A We created strains where two transcription factors are
simultaneously monitored using two fluorescent tags. An example (Hog1:GFP and Msn2:mCherry)
is shown for two cells in osmotic stress (0.4M NaCl). B Estimates of mutual information are
consistent with the transcription factor dynamics being conditionally independent given the state
of the environment. For a 3-state environment (rich media, 0.4M NaCl, and 0.1% glucose), we show
the mutual information calculated for each transcription factor independently, by concatenating the
time-series for the pair of transcription factors monitored in the same cell, and by the concatenating
the time-series for the pair when the trajectories are from different cells (created by randomly
shuffling the time-series between cells and labelled ‘synthetic pair’).
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Fig. S20. Mutual information for pairs of transcription factors. The mutual information
for the stress-type experiments (q = 4) from Fig. 3A for all combinations of two transcription
factors. For each pair, the mutual information is calculated from concatenated time-series. These
values are an average of 2 independent datasets (a total of 6 experiments per transcription fac-
tor). Highly informative pairs are Msn2/4 or Dot6 with a specialist, Msn2/4 with Dot6, and two
specialists.

36



0 10 20 30
1

2

3

0 10 20 30
1

2

3

0 10 20 30
1

2

3

0 10 20 30
1

2

3

0 10 20 30
1

2

3

0 10 20 30
1

2

3

1

0.8

0.6

0.4

0.2

0 1 5 10 15 20

2

1.8

1.2

0.8

0.4

0

0.5

0.4

0.3

0.2

0.1

0

0.4

0.3

0.2

0.1

0

G+G G+SS+S

* **

A B

C D
0.5

N
uc

le
ar

 lo
ca

lis
at

io
n

M
sn

2
M

sn
4

M
af

1

Sf
p1

Ya
p1

To
d6

Ho
g1

M
ig

2

M
ig

1

Do
t6

Msn2

Msn4

Maf1

Sfp1

Yap1

Tod6

Hog1

Mig2

Mig1

Dot6

Oxidative

Carbon

Osmotic

Dot6+Mig2 Msn2+Dot6

Msn2+Dot6 Dot6+Mig2

C
on

tri
bu

tio
n 

of
 ti

m
in

g 
to

 M
I (

bi
ts

)

R
el

at
iv

e 
co

nt
rib

ut
io

n 
of

 ti
m

in
g 

to
 M

I

R
el

at
iv

e 
co

nt
rib

ut
io

n 
to

 M
I

M
I o

f p
ai

r (
bi

ts
)

1.Maf1+Tod6
2.Dot6+Tod6
3.Dot6+Maf1
4.Dot6+Sfp1
5.Maf1+Mig2
6.Msn2+Sfp1
7.Msn2+Dot6
8.Msn2+Maf1
9.Sfp1+Maf1
10.Sfp1+Tod6

Time (min) Time (min)

Number of pairs
Type of pair

Timing
Shape
Total MI

Fig. S21. Generalists often use relative timing between the responses of a pair of
transcription factors to encode information. A Two examples illustrating differences in
relative timing between a pair of transcription factors. The vertical lines indicate the time at
which 50% of the maximum nuclear localization is reached and differences in these response times
are shown by arrows. Although there is no difference in oxidative stress, Mig2 precedes Dot6 in
carbon stress but lags in osmotic stress. B By removing the relative timing (by aligning the mean
responses of both transcription factors), we can estimate the contribution of the relative timing to
the mutual information (for the q = 4 environment). We show the difference between the mutual
information of the pairs and the mutual information of the pairs after alignment (an average of
2 datasets with 6 experiments per transcription factor). C After removing the relative timing,
the remaining information can be attributed to the shape of the responses. We show the top 20
pairs (the names of the top 10 are given) for which timing is most important. The total mutual
information of the pair is shown as a red dot (right axis). Arrows indicate the two pairs shown
in A. D Pairs of transcription factors involving generalists (G) encode more information in the
relative timing of their responses compared to pairs of specialists (S). The mean for each group
is shown with a red line (the 95% confidence interval is shaded red and the standard deviation is
shaded blue). The star indicates a statistical significance of p < 0.001 using a Kolmogorov-Smirnov
test.
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6 transcription factors: Msn2, Dot6, Sfp1, Maf1, Hog1, and Yap1. This data is used for Fig. 4E.
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Fig. S23. Similarities between the prediction probabilities for specific environments
indicate that generalists respond to categories of environments. The confusion matrix is
shown for a q = 7 environment (rich media and two levels of each stress, where low is denoted +
and high is denoted ++), where each row corresponds to one environmental state and the columns
indicate the probability of predicting each of the possible environmental states from a single-cell
time-series. Rows with similar prediction profiles (red square) indicate environmental states that
the transcription factor treats similarly, and the dendrogram shows how environmental states are
grouped into categories according to these prediction profiles. For this analysis, we combined
datasets from Fig. 3A & 3C by selecting two levels of stress for each type of stress (the highest
and the second lowest because the lowest levels showed no response for some transcription factors).
A For Dot6, a highly-informative generalist, low oxidative stress (Oxi+) and rich media (Rich)
have similar prediction profiles and are grouped together in the dendrogram. B Msn2 classifies
low osmotic stress (Osmo+) and low carbon stress (Carbon+) in the same environmental category,
and high oxidative stress (Oxi++) is in its own category.
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